56 research outputs found

    Prediction of Protein-protein Interactions on the Basis of Evolutionary Conservation of Protein Functions

    Get PDF
    Motivation: Although a great deal of progress is being made in the development of fast and reliable experimental techniques to extract genome-wide networks of protein-protein and protein-DNA interactions, the sequencing of new genomes proceeds at an even faster rate. That is why there is a considerable need for reliable methods of in-silico prediction of protein interaction based solely on sequence similarity information and known interactions from well-studied organisms. This problem can be solved if a dependency exists between sequence similarity and the conservation of the proteins’ functions.Results: In this paper, we introduce a novel probabilistic method for prediction of protein-protein interactions using a new empirical probabilistic formula describing the loss of interactions between homologous proteins during the course of evolution. This formula describes an evolutional process quite similar to the process of the Earth’s population growth. In addition, our method favors predictions confi rmed by several interacting pairs over predictions coming from a single interacting pair. Our approach is useful in working with “noisy” data such as those coming from high-throughput experiments. We have generated predictions for fi ve “model” organisms: H. sapiens, D. melanogaster, C. elegans, A. thaliana, and S. cerevisiae and evaluated the quality of these predictions

    A model of evolution with constant selective pressure for regulatory DNA sites

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular evolution is usually described assuming a neutral or weakly non-neutral substitution model. Recently, new data have become available on evolution of sequence regions under a selective pressure, e.g. transcription factor binding sites. To reconstruct the evolutionary history of such sequences, one needs evolutionary models that take into account a substantial constant selective pressure.</p> <p>Results</p> <p>We present a simple evolutionary model with a single preferred (consensus) nucleotide and the neutral substitution model adopted for all other nucleotides. This evolutionary model has a rate matrix in which all substitutions that do not involve the consensus nucleotide occur with the same rate. The model has two time scales for achieving a stationary distribution; in the general case only one of the two rate parameters can be evaluated from the stationary distribution. In the middle-time zone, a counterintuitive behavior was observed for some parameter values, with a probability of conservation for a non-consensus nucleotide greater than that for the consensus nucleotide. Such an effect can be observed only in the case of weak preference for the consensus nucleotide, when the probability to observe the consensus nucleotide in the stationary distribution is less than 1/2. If the substitution rate is represented as a product of mutation and fixation, only the fixation can be calculated from the stationary distribution. The exhibited conservation of non-consensus nucleotides does not take place if the elements of mutation matrix are identical, and can be related to the reduced mutation rate between the non-consensus nucleotides. This bias can have no effect on the stationary distribution of nucleotide frequencies calculated over the ensemble of multiple alignments, e.g. transcription factor binding sites upstream of different sets of co-regulated orthologous genes.</p> <p>Conclusion</p> <p>The derived model can be used as a null model when analyzing the evolution of orthologous transcription factor binding sites. In particular, our findings show that a nucleotide preferred at some position of a multiple alignment of binding sites for some transcription factor in the same genome is not necessarily the most conserved nucleotide in an alignment of orthologous sites from different species. However, this effect can take place only in the case of a mutation matrix whose elements are not identical.</p

    Acid-Base Resistant Zone in Teeth with the Direct Restoration Using Different Adhesive System Generations: A Systematic Review

    Get PDF
    Objective: To find out what the acid-base resistant zone (ABRZ) is and the mechanism of its formation. Material and Methods: This systematic review was based on the search of laboratory studies in which self-etching adhesive systems were used. The electronic database PubMed was used for the search. The search began on August 2021 and ended on June 2022. We have analyzed the materials and methods of each research and entered them in the appropriate tables to give a clearer assessment of the obtained results. Results: This systematic review included 15 full-text articles published from 2011 to 2019. The ABRZ is formed on both dentine and enamel. On dentine, the ABRZ is formed only when using self-etching adhesive systems; on the enamel, on the contrary, the step of preliminary etch and rinse contributes to the formation of a thicker ABRZ. The functional monomer MDP and fluorine increase the thickness of the ABRZ and provide a hybrid layer /ABRZ boundary without defects and erosions. Conclusion: Self-etching adhesive systems ensure the creation of an ABRZ resistant to acid-base tests. This phenomenon can provide the resistance of tooth tissues to demineralization, and therefore increase their resistance to caries

    Dynamics and heterogeneity of brain damage in multiple sclerosis

    Get PDF
    Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative processes that damage the central nervous system (CNS). However, it is not well understood how these events interact and evolve to evoke such a highly dynamic and heterogeneous disease. We established a hypothesis whereby the variability in the course of MS is driven by the very same pathogenic mechanisms responsible for the disease, the autoimmune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and remyelination. We propose that each of these processes acts more or less severely and at different times in each of the clinical subgroups. To test this hypothesis, we developed a mathematical model that was constrained by experimental data (the expanded disability status scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS data and brain volume time series were available. The clinical heterogeneity in the datasets was reduced by grouping the EDSS time series using an unsupervised clustering analysis. We found that by adjusting certain parameters, albeit within their biological range, the mathematical model reproduced the different disease courses, supporting the dynamic CNS damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible axon degeneration produced in the early stages of progressive MS is mainly due to the higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelination. However, and in agreement with recent pathological studies, degeneration of chronically demyelinated axons is not a key feature that distinguishes this phenotype. Moreover, the model reveals that lower rates of axon degeneration and more rapid remyelination make relapsing MS more resilient than the progressive subtype. Therefore, our results support the hypothesis of a common pathogenesis for the different MS subtypes, even in the presence of genetic and environmental heterogeneity. Hence, MS can be considered as a single disease in which specific dynamics can provoke a variety of clinical outcomes in different patient groups. These results have important implications for the design of therapeutic interventions for MS at different stages of the disease

    Automatic pathway building in biological association networks

    Get PDF
    BACKGROUND: Scientific literature is a source of the most reliable and comprehensive knowledge about molecular interaction networks. Formalization of this knowledge is necessary for computational analysis and is achieved by automatic fact extraction using various text-mining algorithms. Most of these techniques suffer from high false positive rates and redundancy of the extracted information. The extracted facts form a large network with no pathways defined. RESULTS: We describe the methodology for automatic curation of Biological Association Networks (BANs) derived by a natural language processing technology called Medscan. The curated data is used for automatic pathway reconstruction. The algorithm for the reconstruction of signaling pathways is also described and validated by comparison with manually curated pathways and tissue-specific gene expression profiles. CONCLUSION: Biological Association Networks extracted by MedScan technology contain sufficient information for constructing thousands of mammalian signaling pathways for multiple tissues. The automatically curated MedScan data is adequate for automatic generation of good quality signaling networks. The automatically generated Regulome pathways and manually curated pathways used for their validation are available free in the ResNetCore database from Ariadne Genomics, Inc. [1]. The pathways can be viewed and analyzed through the use of a free demo version of PathwayStudio software. The Medscan technology is also available for evaluation using the free demo version of PathwayStudio software

    Acid-Base Resistant Zone in Teeth with the Direct Restoration Using Different Adhesive System Generations: A Systematic Review

    Get PDF
    Objective: To find out what the acid-base resistant zone (ABRZ) is and the mechanism of its formation. Material and Methods: This systematic review was based on the search of laboratory studies in which self-etching adhesive systems were used. The electronic database PubMed was used for the search. The search began on August 2021 and ended on June 2022. We have analyzed the materials and methods of each research and entered them in the appropriate tables to give a clearer assessment of the obtained results. Results: This systematic review included 15 full-text articles published from 2011 to 2019. The ABRZ is formed on both dentine and enamel. On dentine, the ABRZ is formed only when using self-etching adhesive systems; on the enamel, on the contrary, the step of preliminary etch and rinse contributes to the formation of a thicker ABRZ. The functional monomer MDP and fluorine increase the thickness of the ABRZ and provide a hybrid layer /ABRZ boundary without defects and erosions. Conclusion: Self-etching adhesive systems ensure the creation of an ABRZ resistant to acid-base tests. This phenomenon can provide the resistance of tooth tissues to demineralization, and therefore increase their resistance to caries

    Machine learning combining multi-omics data and network algorithms identifies adrenocortical carcinoma prognostic biomarkers

    Get PDF
    Background: Rare endocrine cancers such as Adrenocortical Carcinoma (ACC) present a serious diagnostic and prognostication challenge. The knowledge about ACC pathogenesis is incomplete, and patients have limited therapeutic options. Identification of molecular drivers and effective biomarkers is required for timely diagnosis of the disease and stratify patients to offer the most beneficial treatments. In this study we demonstrate how machine learning methods integrating multi-omics data, in combination with system biology tools, can contribute to the identification of new prognostic biomarkers for ACC.Methods: ACC gene expression and DNA methylation datasets were downloaded from the Xena Browser (GDC TCGA Adrenocortical Carcinoma cohort). A highly correlated multi-omics signature discriminating groups of samples was identified with the data integration analysis for biomarker discovery using latent components (DIABLO) method. Additional regulators of the identified signature were discovered using Clarivate CBDD (Computational Biology for Drug Discovery) network propagation and hidden nodes algorithms on a curated network of molecular interactions (MetaBase™). The discriminative power of the multi-omics signature and their regulators was delineated by training a random forest classifier using 55 samples, by employing a 10-fold cross validation with five iterations. The prognostic value of the identified biomarkers was further assessed on an external ACC dataset obtained from GEO (GSE49280) using the Kaplan-Meier estimator method. An optimal prognostic signature was finally derived using the stepwise Akaike Information Criterion (AIC) that allowed categorization of samples into high and low-risk groups.Results: A multi-omics signature including genes, micro RNA's and methylation sites was generated. Systems biology tools identified additional genes regulating the features included in the multi-omics signature. RNA-seq, miRNA-seq and DNA methylation sets of features revealed a high power to classify patients from stages I-II and stages III-IV, outperforming previously identified prognostic biomarkers. Using an independent dataset, associations of the genes included in the signature with Overall Survival (OS) data demonstrated that patients with differential expression levels of 8 genes and 4 micro RNA's showed a statistically significant decrease in OS. We also found an independent prognostic signature for ACC with potential use in clinical practice, combining 9-gene/micro RNA features, that successfully predicted high-risk ACC cancer patients.Conclusion: Machine learning and integrative analysis of multi-omics data, in combination with Clarivate CBDD systems biology tools, identified a set of biomarkers with high prognostic value for ACC disease. Multi-omics data is a promising resource for the identification of drivers and new prognostic biomarkers in rare diseases that could be used in clinical practice

    Atlas of Signaling for Interpretation of Microarray Experiments

    Get PDF
    Microarray-based expression profiling of living systems is a quick and inexpensive method to obtain insights into the nature of various diseases and phenotypes. A typical microarray profile can yield hundreds or even thousands of differentially expressed genes and finding biologically plausible themes or regulatory mechanisms underlying these changes is a non-trivial and daunting task. We describe a novel approach for systems-level interpretation of microarray expression data using a manually constructed “overview” pathway depicting the main cellular signaling channels (Atlas of Signaling). Currently, the developed pathway focuses on signal transduction from surface receptors to transcription factors and further transcriptional regulation of cellular “workhorse” proteins. We show how the constructed Atlas of Signaling in combination with an enrichment analysis algorithm allows quick identification and visualization of the main signaling cascades and cellular processes affected in a gene expression profiling experiment. We validate our approach using several publicly available gene expression datasets

    Tumor Necrosis Factor Receptor SF10A (TNFRSF10A) SNPs Correlate With Corticosteroid Response in Duchenne Muscular Dystrophy

    Get PDF
    Background Duchenne muscular dystrophy (DMD) is a rare and severe X-linked muscular dystrophy in which the standard of care with variable outcome, also due to different drug response, is chronic off-label treatment with corticosteroids (CS). In order to search for SNP biomarkers for corticosteroid responsiveness, we genotyped variants across 205 DMD-related genes in patients with differential response to steroid treatment. Methods and Findings We enrolled a total of 228 DMD patients with identified dystrophin mutations, 78 of these patients have been under corticosteroid treatment for at least 5 years. DMD patients were defined as high responders (HR) if they had maintained the ability to walk after 15 years of age and low responders (LR) for those who had lost ambulation before the age of 10 despite corticosteroid therapy. Based on interactome mapping, we prioritized 205 genes and sequenced them in 21 DMD patients (discovery cohort or DiC = 21). We identified 43 SNPs that discriminate between HR and LR. Discriminant Analysis of Principal Components (DAPC) prioritized 2 response-associated SNPs in theTNFRSF10Agene. Validation of this genotype was done in two additional larger cohorts composed of 46 DMD patients on corticosteroid therapy (validation cohorts or VaC1), and 150 non ambulant DMD patients and never treated with corticosteroids (VaC2). SNP analysis in all validation cohorts (N= 207) showed that the CT haplotype is significantly associated with HR DMDs confirming the discovery results. Conclusion We have shown that TNFRSF10A CT haplotype correlates with corticosteroid response in DMD patients and propose it as an exploratory CS response biomarker

    MAPK pathway and B cells overactivation in multiple sclerosis revealed by phosphoproteomics and genomic analysis

    Full text link
    Dysregulation of signaling pathways in multiple sclerosis (MS) can be analyzed by phosphoproteomics in peripheral blood mononuclear cells (PBMCs). We performed in vitro kinetic assays on PBMCs in 195 MS patients and 60 matched controls and quantified the phosphorylation of 17 kinases using xMAP assays. Phosphoprotein levels were tested for association with genetic susceptibility by typing 112 single-nucleotide polymorphisms (SNPs) associated with MS susceptibility. We found increased phosphorylation of MP2K1 in MS patients relative to the controls. Moreover, we identified one SNP located in the PHDGH gene and another on IRF8 gene that were associated with MP2K1 phosphorylation levels, providing a first clue on how this MS risk gene may act. The analyses in patients treated with disease-modifying drugs identified the phosphorylation of each receptor’s downstream kinases. Finally, using flow cytometry, we detected in MS patients increased STAT1, STAT3, TF65, and HSPB1 phosphorylation in CD19+ cells. These findings indicate the activation of cell survival and proliferation (MAPK), and proinflammatory (STAT) pathways in the immune cells of MS patients, primarily in B cells. The changes in the activation of these kinases suggest that these pathways may represent therapeutic targets for modulation by kinase inhibitors
    corecore