
Machine learning combining
multi-omics data and network
algorithms identifies
adrenocortical carcinoma
prognostic biomarkers

Roberto Martin-Hernandez*, Sergio Espeso-Gil†, Clara Domingo†,
Pablo Latorre, Sergi Hervas, Jose Ramon Hernandez Mora and
Ekaterina Kotelnikova

Discovery and Translational Sciences (DTS), Clarivate Analytics, Barcelona, Spain

Background: Rare endocrine cancers such as Adrenocortical Carcinoma (ACC)
present a serious diagnostic and prognostication challenge. The knowledge about
ACC pathogenesis is incomplete, and patients have limited therapeutic options.
Identification of molecular drivers and effective biomarkers is required for timely
diagnosis of the disease and stratify patients to offer the most beneficial
treatments. In this study we demonstrate how machine learning methods
integrating multi-omics data, in combination with system biology tools, can
contribute to the identification of new prognostic biomarkers for ACC.

Methods: ACC gene expression and DNA methylation datasets were downloaded
from the Xena Browser (GDC TCGA Adrenocortical Carcinoma cohort). A highly
correlated multi-omics signature discriminating groups of samples was identified
with the data integration analysis for biomarker discovery using latent
components (DIABLO) method. Additional regulators of the identified signature
were discovered using Clarivate CBDD (Computational Biology for Drug
Discovery) network propagation and hidden nodes algorithms on a curated
network of molecular interactions (MetaBase™). The discriminative power of
the multi-omics signature and their regulators was delineated by training a
random forest classifier using 55 samples, by employing a 10-fold cross
validation with five iterations. The prognostic value of the identified biomarkers
was further assessed on an external ACC dataset obtained from GEO (GSE49280)
using the Kaplan-Meier estimator method. An optimal prognostic signature was
finally derived using the stepwise Akaike Information Criterion (AIC) that allowed
categorization of samples into high and low-risk groups.

Results: A multi-omics signature including genes, micro RNA’s and methylation
sites was generated. Systems biology tools identified additional genes regulating
the features included in themulti-omics signature. RNA-seq,miRNA-seq andDNA
methylation sets of features revealed a high power to classify patients from stages
I-II and stages III-IV, outperforming previously identified prognostic biomarkers.
Using an independent dataset, associations of the genes included in the signature
with Overall Survival (OS) data demonstrated that patients with differential
expression levels of 8 genes and 4 micro RNA’s showed a statistically
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significant decrease in OS. We also found an independent prognostic signature for
ACC with potential use in clinical practice, combining 9-gene/micro RNA features,
that successfully predicted high-risk ACC cancer patients.

Conclusion: Machine learning and integrative analysis of multi-omics data, in
combination with Clarivate CBDD systems biology tools, identified a set of
biomarkers with high prognostic value for ACC disease. Multi-omics data is a
promising resource for the identification of drivers and new prognostic biomarkers
in rare diseases that could be used in clinical practice.

KEYWORDS

ACC, multi-omics, machine learning, systems biology, survival analysis, prognostic
biomarkers

Introduction

Adrenocortical carcinoma (ACC) is a rare and aggressive cancer
that originates in the adrenal gland cortex. Among all adrenal
tumors, adrenocortical carcinoma is one of the most prevalent
cancers with one of the worst prognoses (Mansmann et al.,
2004). Despite advancements in cancer research, very limited
therapeutic options are available (Shariq and McKenzie, 2021).
Although, it has been associated with other malignancies such as
Li-Fraumeni or Beckwith-Wiedemann syndromes, the indication
remains sporadic with an unknown cause. This underscores the
critical need to identify robust prognostic biomarkers that can
effectively stratify patients for personalized therapeutic approaches.

In recent years, several molecular pathways, such as Ghrelin and
Wnt signaling, have been described in relation to ACC
(Komarowska et al., 2018). Although some genes associated with
the disease predisposition have been discovered, particularly IGF-2,
is still unclear which factors contribute most significantly to the
development of ACC (Libé and Chanson, 2007).

The limited curative treatments and life expectancy for rare
diseases underline the existing caveats in trying to understand the
multifactorial nature of these indications. To close this gap,
combination of multiple omics has been demonstrated to be
previously useful, offering comprehensive insights into the
molecular landscape of a specific biological phenomenon
(Subramanian et al., 2020). For example, it has been shown to be
effective in early blood biomarker characterization for ovarian
cancer detection (Xiao et al., 2022); as well as in tumor subtype
classification (Pucher et al., 2019) and target discovery for successful
centronuclear myopathy treatment (Djeddi et al., 2021). In the
context of ACC, this approach has been recently shown to be
useful for patient stratification (Guan et al., 2022).

By simultaneously analyzing various molecular layers,
biomarkers derived from multi-omics analysis can provide a
holistic view of the molecular modifications responsible for the
disease. To tackle omics integration complexity, recent
developments in machine learning and multivariate methods
have helped ease the process (Wang et al., 2022). However, it is
equally crucial to pinpoint the upstream regulators that drive these
changes to gain a more complete understanding of the underlying
mechanisms. Network algorithms, including Hidden Nodes (Dezso
et al., 2009), Random Walk (Smedley et al., 2014), and Network
Propagation (Vanunu et al., 2010), have emerged as valuable tools in
this regard, as they allow the identification of pivotal genes that

indicate prospective regulators of the observed alterations based on
their topological significance. This additional layer of information
may play a crucial role in unravelling the molecular alterations
linked to diseases and may enhance prognostic accuracy.

To achieve effective patient stratification, it is essential to accurately
categorize patients based on the aforementioned data modalities and
inferred regulators. In the context of precision medicine, machine
learning techniques have been widely employed for this purpose.
Notably, among these techniques, the random forest algorithm
efficiently and accurately addresses the inherent challenges of
integrating diverse data sources (Assié et al., 2014).

Overall, the combination of multi-omics approaches, network
algorithms, and machine learning methods offers a promising
framework for enhancing our understanding of ACC and for
improving patient stratification for personalized therapeutic
strategies. In this study, we proposed a novel machine learning
method based on Projection to Latent Structures (PLS) with sparse
discriminant analysis, namely, DIABLO, integrating ACC RNA-seq,
miRNA-seq and DNA methylation data for biomarker
identification. To maximize target identification, we coupled it
with Clarivate CBDD (Computational Biology for Drug
Discovery) network algorithm pipelines using MetaBase™
molecular network, a high-quality and scientifically validated
interactome with more than 300.000 interactions curated by
Clarivate experts. Our results show the benefit of the usage of
novel machine learning methods coupled with Clarivate
bioinformatics workflows and network algorithms.

Materials and methods

Adrenocortical carcinoma data acquisition

GDC TCGA Adrenocortical Carcinoma (ACC) datasets (Zheng
et al., 2016), and the corresponding phenotypic and clinical data,
were downloaded from the UCSC Xena Browser (https://
xenabrowser.net/datapages/) (Goldman et al., 2020). Three types
of omics data were selected due to their complementarity and their
suitability for the latent variable used approach: RNA-seq gene
expression data normalized in Fragments Per Kilobase Million
(FPKM) units, micro RNA expression data normalized in RPM
units, and Illumina 450 K methylation microarray data as beta
values. A total of 79 samples derived from different patients are
shared among the three datasets.
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Multi-omics data preprocessing and
integration analysis

Predictor variables with low variance across all the samples were
filtered out from each dataset, selecting features with a median
absolute deviation above the third quartile. Datasets from different
types of omics were integrated using a multiblock Projection to
Latent Structure—Discriminant Analysis (PLS-DA) approach.
Specifically, the block.splsda function from Data Integration
Analysis for Biomarker discovery using Latent variable
approaches for Omics studies (DIABLO) framework (Singh et al.,
2019), available within the mixOmics R library (v. 6.24.0), was used
with default parameters. The relationship structure between
inputted datasets was defined using a design matrix with value of
0.1, to prioritize the predictive ability of the model. Correlations of
the latent variables with available clinical data and their significance
was assessed using the eigencorplot function from the PCAtools R
library (v. 2.12.0) with default parameters.

Systems biology tools

MetaBase™ (v.4.8.0) a data repository of manually curated
molecular interactions and signaling pathways from Clarivate
Analytics, was used as the source of biological knowledge in this
study. The database includes over 1.500 regulatory and diseases-
specific pathway maps, and a network with more than 3.3 million of
molecular interactions. Network algorithms were leveraged from the
industry-leading systems biology consortium CBDD analytical
library (v.17.2.0), developed by Clarivate Analytics. For the
network propagation and hidden nodes analyses, network nodes
with scores below 0.1 and 20 respectively, were dropped from the
analysis.

Machine learning classifier

A Random Forest (RF) model with repeated cross-validation
(5 times) and 500 trees was trained based on 70% of the samples,
using combinations of different features. The number of features
randomly selected for each tree (mtry) ranged within 3, 5, 7. Selected
division criteria was by “splitrule,” and the minimum node’s size for
division ranged within 2, 4, 6. Computations were performed using
the caret package (v.6.0–94) in R. Specifically, the “ranger” method
and “AUC” metric were used in the training step.

Survival analysis and construction of a
prognostic model

Univariate association of the features with overall survival (OS)
was estimated by log-rank test and the Kaplan-Meier method.
Survival coxph function in Survival R package (version 3.5.5) was
used to perform univariate and multivariate Cox Proportional-
Harzards (CoxPH) regression analyses. Survival curves were
drawn using survminer R package (version 0.4.9). Patients with
low expression were used as the reference group for all the analyzed
features. Weiss score and age (as continuous variable) were included

in the multivariate Cox PHmodel to assess simultaneously the effect
of the factors on survival time.

Then, we constructed an optimal prognostic signature
associated with OS through sequential addition or elimination of
features based on their performance using the Akaike Information
Criterion (AIC) as proposed by Wagenmakers, Eric-Jan, and Simon
Farrell (Wagenmakers and Farrell, 2004). Specifically, the step
function with backwards selection from the stats R package was
used, in which variable terms were evaluated for dropping at each
step. Finally, the optimal prognostic model obtained was defined as
risk score using the following equation:

OptMultiSig risk score � ∑
n

i�1
coefOptMultiSigi × EXP OptMultiSigi

where OptMultiSig risk score is the prognostic risk score of ACC
patients and coef OptMultiSigi are the ithoptimal multi-omics
feature’s regression coefficient obtained from the step analysis.
Based on the median risk score, ACC patients were divided into
high- and low-risk groups. Next, we assessed the difference in
survival between the two groups by using Kaplan-Meier method.
We considered p-value <0.05 as statistically significant.

Cortellis drug discovery intelligence
biomarkers and drug targets

CDDI (https://www.cortellis.com/drugdiscovery) is a
knowledgebase focused on pharma and drug development,
developed and maintained by Clarivate Analytics. Biomarker data
used in this study was downloaded from CDDI (June 2023). The
database integrates biological, chemical, and pharmacological data
on more than 620,000 molecules with demonstrated biological
activity, and over 440,000 patent family records. Main
information about biomarkers include data about biomarker type
(proteomic, biochemical, etc.), development stage, context of their
usage (diagnosis, risk detection, etc.), number of related drugs,
related literature citations and patents, proof-of-mechanism,
proof-of-concept, treatment/safety monitoring, and outcome
measurement. Drug targets include annotation about structural
data from the Protein Data Bank (PDB) and comprehensive data
regarding the development phase (clinical phases, launched or
withdrawn) of the associated drugs for different therapeutic areas
or indications.

Results

Multi-omics data integration and biomarker
identification

Gene expression and methylation data were used for the
multi-omics integration. After pre-processing, 15.120 features
were retained from RNA-Seq data, 553 from miRNA-Seq data,
and 98.588 from DNA methylation data. Then, we removed
samples corresponding to normal tissue and samples with
missing data at the level of tumor stage diagnosis, keeping for
the analysis 77 samples from 77 different patients. Information
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about the included samples and related metadata is available in
Supplementary Table S1.

We used an N-integration approach with supervised learning
within the DIABLO framework to identify highly correlated multi-
omics features discriminating ACC at different stages. These features,
which capture the maximum shared variation within each data type,
are included in the latent components extracted by the framework. To
control the imbalance of samples belonging to different disease stages,
the initial four stages were grouped into two main stages (stages I-II
and stages III-IV). Integration was performed using sparse Partial
Least Squares Discriminant Analysis (sPLS-DA), which enables the
selection of the most predictive or discriminative features in the data
that assist in the classification of samples. We started generating
sPLS-DA models with up to 5 components to estimate the
classification error rate between stages with respect to the number
of selected variables. This strategy allowed us to tune the number of
components and variables from each dataset to be retained in the final
model. A 3 × 3 design matrix was used to determine whether the
datasets should be connected. The value of the design matrix was set
at 0.1 as a default value to prioritize the discriminative ability of the
model (Tenenhaus and Tenenhaus, 2014). A total of five components
were left for use in the final model, including 46 features from both
RNA-Seq and miRNA-Seq data, and 65 from DNAmethylation data
(Table 1).

We performed a final N-integrative supervised analysis using the
defined features. At the single omics dataset level, the identified
features explained a maximum of 30% of the total variance among
the five components (Table 2). DNA methylation was the omics
dataset that explained the highest amount of variance, followed by
the miRNA-Seq and RNA-Seq datasets. Details regarding the
features included in each component from the three omics
datasets, including the obtained loadings, can be found in Tables
3–5. Visualization of the samples projected onto the three
components reporting a higher explained variance allowed us to
successfully account for the separation observed between the defined
stages. (Figure 1A). The features included in the final model
exhibited a high level of correlation (Figure 1B). Indeed, higher
positive correlation levels were observed between RNA-Seq and
micro RNA features, whereas DNA methylation features showed
higher levels of negative correlation with both RNA-Seq and micro
RNA features. Furthermore, we visualized the cluster structure
resulting from the multi-omics features found in the first
component of the sPLS-DA model, which included the larger
number of features amongst the 5 defined components (47)
(Figure 1C). The heatmap shows that samples (rows) from the
same disease stage category tend to cluster together. Additionally,

micro RNA and methylation blocks showed opposite abundance
levels based on the disease stages, with the set of methylation sites
being more abundant in III-IV stages, whereas the set of micro
RNA’s was more abundant in I-II stages.

Additionally, we inspected the correlations of the identified
components from the three OMICs datatypes with available
clinical data from the TCGA ACC dataset (Supplementary Figure
S1). Statistically significant correlations were identified between the
TNM classification system parameters and latent components.
Specifically, lymph node stage (N) showed a significant positive
correlation with component 2 (0.24), and tumor size (T) was
negatively correlated with component 3 (−0.23). Among the
obtained correlations, higher correlations ( ± 0.2) were observed
between the Weiss score and components 1, 3 and 4, whereas Age
showed a positive correlation with component 5 (0.2).

Topological regulation analysis

We employed two complementary network algorithms to
find genes associated with the newly identified multi-omics
signature at a topological level. As most of the interactions
included in MetaBase™ network are proteins, only the genes
from the identified multi-omics signature were used as starting
nodes. First, we used an algorithm based on Hidden Nodes
method (HN) (Dezso et al., 2009), which prioritized nodes
providing high connectivity between the seed nodes using a
directed network. The statistical significance of the
overconnected nodes was assessed using a hypergeometric
test, and the p-values were adjusted considering all internal
nodes. The scores for each node are the obtained adjusted
p-values on a -log10 scale. It is a local method able to
identify upstream regulators or downstream effectors of the
input features. As a complementary approach, a network
propagation (NP) algorithm (Vanunu et al., 2010) was
employed, which is a global method making use of the whole
network topology to find nodes highly connected to the input
nodes. The scoring of nodes is done by simulating an iterative
process where flow is pumped from the start nodes to their
network neighbors. The identified features (Supplementary
Table S2) include important regulators of gene expression
cascades such as transcription factors, some of them from the

TABLE 1 Optimal number of features to retain in the final model, from each
omic dataset and for five components.

RNA seq miRNA seq DNA methylation

Component 1 10 12 25

Component 2 7 5 5

Component 3 9 6 10

Component 4 5 14 5

Component 5 15 9 20

TABLE 2 Percentage of variance explained in the final model from each omic
dataset and for five components.

RNA seq miRNA seq DNA
methylation

Component 1 9.8 7.8 12

Component 2 2.9 2.4 9.2

Component 3 1.9 9 1.5

Component 4 2.4 1.7 2.6

Component 5 5.4 6.1 4.3

Total variance
explained

22.4 27 29.6

Bold values are the sum of percentages in the upper cells (% total variance explained).
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same family (KLF7, KLF16), protein kinases, membrane
receptors and other protein binding molecules.

A functional enrichment of the identified multi-omics
biomarkers was performed. We defined important enriched
ontologies as the ones significantly enriched in the set of multi-
omics biomarkers (p-value≤0.01) and including at least one of the
identified topological regulators. The most enriched important

ontologies belong to MetaBase™ pathway maps, a comprehensive
ontology of canonical pathways integrating 3-6 signaling pathways
which describe biological mechanisms. As shown in the generated
integrative network of the obtained results (Figure 2), we mainly
identified enriched terms related to oncogenic pathways such as
p53 signaling, S1P2 receptor activation signaling and regulation of
micro RNA’s in distinct cancer types.

TABLE 3 Correlated features from RNA-Seq dataset obtained after multi-omics data integration. Corresponding loadings are reported with the feature name.

Component 1 Component 2 Component 3 Component 4 Component 5

TEDCA (0.61) ASF1A (0.49) SNORD114-3 (−0.58) PAQR5 (0.98) ST6GALNAC4 (0.41)

DCAF15 (0.58) ZUP1 (0.24) MEG3 (−0.58) ACSS2 (0.12) CHID1 (0.33)

UBE2S (0.3) GATA4 (0.23) MEG9 (−0.39) CAP2 (0.04) GALNS (0.28)

HAUS8 (0.27) TSPYL4 (0.07) MIR770 (−0.37) STAC3 (−0.16) B4GALT3 (0.24)

PLXNA1 (0.21) SIAE (−0.78) MEG8 (−0.18) KANSL1-AS1 (−0.02) N4BP2L1 (0.22)

YJEFN3 (0.21) ATP6V0D1-DT (−0.15) SNORD113-3 (−0.08) SHB (0.22)

KCNJ14 (0.17) UGGT2 (−0.04) C11orf1 (−0.03) D2HGDH (0.21)

DDX39A (0.13) SNORD113-4 (−0.03) DUSP12 (0.16)

CLASRP (0.02) MIR493HG (−0.03) FRAT2 (0.13)

TUBB4B (0.01) CLMP (0.12)

AVPR1A (0.09)

RNPEP (0.09)

JTB (0.09)

PRELID3A (0.01)

VWA5B2 (−0.6)

TABLE 4 Correlated features from miRNA-Seq dataset and corresponding loadings obtained after multi-omics data integration. Corresponding loadings are
reported with the feature name.

Component 1 Component 2 Component 3 Component 4 Component 5

hsa-mir-615 (0.59) hsa-mir-1179 (0.38) hsa-mir-539 (−0.7) hsa-mir-675 (0.57) hsa-mir-511 (0.1)

hsa-mir-130b (0.25) hsa-mir-891a (−0.66) hsa-mir-136 (−0.48) hsa-mir-330 (0.34) hsa-mir-937 (0.05)

hsa-mir-196a-2 (0.22) hsa-mir-708 (−0.62) hsa-mir-154 (−0.38) hsa-mir-216a (0.18) hsa-mir-190b (0.04)

hsa-mir-5698 (0.13) hsa-mir-504 (−0.15) hsa-mir-487b (−0.34) hsa-mir-607 (0.16) hsa-mir-1224 (−0.9)

hsa-mir-4746 (0.12) hsa-mir-217 (−0.09) hsa-mir-376c (−0.14) hsa-mir-6716 (0.11) hsa-mir-125a (−0.34)

hsa-mir-196a-1 (0.07) hsa-mir-381 (−0.003) hsa-mir-5690 (0.06) hsa-mir-3912 (−0.18)

hsa-mir-130a (0.05) hsa-mir-6772 (0.004) hsa-mir-181c (−0.18)

hsa-mir-874 (−0.44) hsa-mir-4326 (−0.48) hsa-mir-181d (−0.14)

hsa-mir-99a (−0.36) hsa-mir-625 (−0.38) hsa-mir-99b (−0.09)

hsa-mir-1258 (−0.35) hsa-mir-4521 (−0.3)

hsa-mir-466 (−0.25) hsa-mir-16–1 (−0.1)

hsa-mir-664a (−0.03) hsa-let-7i (−0.09)

hsa-mir-34c (−0.06)

hsa-mir-16–2 (−0.04)
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Model construction

To evaluate the discriminative power of the identified multi-
omics signature and their topological regulators extracted using
systems biology approaches, we trained different random forest
classifiers. The built model from the multi-omics signature
(MO-Model) included 157 features: 46 genes, 46 micro

RNA’s, 65 methylation sites. A second model (REG-Model),
corresponding to the identified regulators, was built using
53 genes. A third model (MOREG-Model) combined the
features from two previous ones. Finally, a last model
(BIOM-Model) was built using known disease biomarkers
available in the literature (Xing et al., 2019), accounting for
14 genes: AURKA, TYMS, MAD2L1, GINS1, RACGAP1, RRM2,

TABLE 5 Correlated features from DNA-Methylation dataset obtained after multi-omics data integration. Corresponding loadings are reported with the feature
name.

Component 1 Component 2 Component 3 Component 4 Component 5

SOX9-AS1,SOX9-
cg13058710 (0.53)

CLEC18C,RP11-296I103-
cg00738113 (0.75)

MEG3,RP11-123M62-
cg05200614 (0.56)

FTX,FTX_5-cg08195522 (0.58) CHIT1-cg25705508 (−0.49)

BHMT,DMGDH-
cg02286091 (0.42)

ALDH3B2-
cg00276214 (0.44)

MEG3,RP11-123M62-
cg23912522 (0.44)

C17orf51,RP11-822E236,RP11-
822E238-cg19055869 (0.38)

LINC00967-
cg23089445 (−0.43)

cg08200869 (0.41) cg01292539 (0.4) MEG3-cg09285543 (0.4) MID1IP1-AS1,MID1IP1-
cg05996419 (0.34)

SYT6-cg01974027 (−0.36)

cg11411203 (0.3) cg26392367 (0.3) MEG3-cg26374305 (0.37) BRWD3-cg25063710 (0.25) GPR56-cg03032770 (−0.33)

cg18471993 (0.3) cg10635188 (0.09) MEG3_1,MEG3-
cg23176399 (0.32)

RP11-184A23-cg09455513 (−0.59) FAM84A-cg14190151 (−0.32)

cg26195356 (0.26) MEG3-cg14245102 (0.18) PRKAG2-cg10370262 (−0.24)

cg24717799 (0.17)) MIR770,MEG3,RP11-123M62-
cg01022345 (0.17)

RP11-236J176,TUB-
cg17090237 (−0.23)

DTX1-cg27664496 (0.14) MEG3_1,MEG3-
cg25836301 (0.14)

RP11-20I204,SPON2-
cg09555706 (−0.17)

LINC00391-
cg17775765 (0.13)

MEG3_1,MEG3-
cg09926418 (0.06)

RP11-150O123-
cg00053916 (−0.15)

RP11-66B248,ALDH1A3-
cg13615592 (0.1)

NDN-cg12138102 (−0.15) SIGLEC17P,CTD-3187F814-
cg22658316 (−0.13)

cg17278072 (0.1) SH3PXD2B-
cg19027424 (−0.11)

RP11-714M232-
cg13633270 (0.09)

SLC35F3-cg06369407 (−0.1)

C5orf38-cg21629500 (0.09) SMIM12,GJB4-
cg01828548 (−0.09)

RP11-60A81-
cg17438030 (0.08)

KCNC3-cg22328426 (−0.09)

cg20139706 (0.06) GDF2-cg23812775 (−0.07)

ZIC5-cg24259244 (0.05) REEP4-cg02399048 (−0.06)

EN1-cg16794506 (0.05) PPFIA4-cg11656175 (−0.04)

cg02958634 (0.05) ERICH3-cg09365529 (−0.03)

TBX2,TBX2-AS1-
cg21389753 (0.04)

PODXL-cg16488098 (−0.01)

EN1-cg21215767 (0.04) cg14930000 (−0.01)

AP0006624,YPEL4-
cg10366093 (0.03)

ICAM5-cg26316885 (0.02)

cg26946259 (0.02)

cg11419931 (0.02)

TBX4-cg14823851 (0.01)
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FIGURE 1
(A) 3D samples plots for RNA-Seq, micro RNA and DNAmethylation data. For each OMICs dataset, samples are projected into the space spanned by
the three components explaining most of the variance. Disease stage is represented with different colors. (B). Circos plot representing correlations
among features from different data types. Only variables with absolute correlations higher than 0.75 are shown. Outer lines represent the expression
levels for each variable from the two different stage groups. (C). Clustered heatmap using variables included in the component 1 from themultiblock
sPLS-DA model. Samples are represented in rows, and features from different data type are represented in columns. Euclidean distance and Complete
linkage methods are used for clustering. The standardized abundance level is shown by the color key.
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EZH2, PRC1, ZWINT, CDK1, CCNB1, SMC4, NCAPG, and
TPX2. Details from the training process on 55 samples, and
the evaluation using the remaining 22 samples can be found in
Table 6. MO and MOREG models are the best performers
during the training process (ROC >0.9), followed by the
BIOM model, being REG model the one with the worse
performance due to its poor specificity (Figure 3). In the
cross-validation, MOREG model clearly outperformed the
rest of the models with a ROC value of 0.87. The MO model
still showed a high discriminative power (ROC = 0.83), while
the REG model surpassed the performance of the BIOM model.

Cortellis drug discovery intelligence
biomarkers and targets for adrenocortical
carcinoma

The biomarkers from the identified multi-omics signature were
searched across the CDDI database. Since DNAmethylation biomarkers
consisted of CpG-gene pairs or trios, we scanned these across our
database separately for CpGs and their associated genes, making up a
total of 266 input biomarkers for our search.

The search led to the identification of 28 ACC biomarkers,
167 cancer biomarkers and 12 ACC targets overlapping with the

FIGURE 2
Integrative network consisting of genes andmicro RNA’s identified in themulti-omics signature, their topological regulators and ontologies (nodes),
and their relationships (edges). The nodes of the network were restricted to all the genes from the multi-omics signature and their regulators showing at
least one interaction. Only micro RNA’s with at least five interactions are shown. Important ontologies in the network are enriched for multi-omics
biomarkers (p-value≤0.01) and include at least 1 regulator. Regarding the edges of the network, two types of connections are considered: 1) Protein-
Protein interactions among multi-omics biomarkers and their topological regulators, 2) Protein-Part of pathway, in which multi-omics biomarkers and
their topological regulators belong or not to the aforementioned ontologies.

TABLE 6 Summary statistics for random forest models.

Training Cross-validation

Model name ROC Sensitivity Specificity ROC Sensitivity Specificity

MOREG 0.91 0.85 0.7 0.87 0.56 0.77

MO 0.915 0.87 0.7 0.83 0.56 0.77

REG 0.69 0.8 0.43 0.76 0.22 0.85

BIOM 0.79 0.72 0.73 0.59 0.44 0.69
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features from the identified multi-omics signature (Figure 4). Out of
the 167 cancer biomarkers, 26 are in experimental or early studies in
human stages for ACC. Interestingly, we identified 13 ACC targets
in CDDI, from which 12 are found in our multi-omics signature,
including DICER1 and KRAS as specific ACC biomarkers that were
identified using systems biology tools. The presence of DICER1

mutations in endocrine cancers calls for more research given the lack
of effective treatments. In addition, novel therapeutic strategies,
including targeted therapies such as tyrosine kinase inhibitors
(TKIs), are starting to be studied for ACC.

Interestingly, 99 features from the multi-omics signature did not
overlap with CDDI data and could represent potential new disease

FIGURE 3
Receiver operating characteristic curves comparing results obtained in the validation of the four different models built using the results obtained
from analysis of ACC multi-omics dataset.

FIGURE 4
Venn diagram of the lists of ACC biomarkers, ACC targets, cancer biomarkers and the identified multi-omics signature.
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biomarkers and targets. In addition, the 12 features from our multi-
omics signature that overlap with ACC targets are particularly
interesting. These findings emphasize the applicability of CDDI
to identify known biomarkers and/or targets for which novel drugs
are approved or are under study, where there is potential for drug
repositioning for these rare and understudied tumors. Details about
the multi-omics signature features included in CDDI are available in
Supplementary Table S3.

Survival analysis and construction of a
prognostic signature

The prognostic value of the features identified in our analysis
was further validated using data from an external dataset with
available multi-omics data (GSE49280). Specifically, the selected
study contains omics data from gene expression (transcripts and
micro RNA’s) and DNA methylation, with associated clinical data
including survival information. Some samples were not matched
across omics datasets: DNA methylation was available for
81 patients; micro RNA data was available for 78 patients and
mRNA data was available for 44 patients. For the former data type,
only 3 methylation sites from the identified signature were found to
overlap with the methylation data from the external dataset, due to
the low throughput of the platform used in GSE49277 study
(27.578 CpG sites) compared to the platform from the GDC
TCGA ACC dataset (450.000 CpG sites).

We generated individual Kaplan-Meier curves for each gene, micro
RNAandDNAmethylation sites identified in themulti-omics signature. The
obtained curves are available as Supplementary Data (KM curves
methylation, KM curves micro RNA’s, KM curves genes) (survival time
is reported in months). Regarding multi-omics features corresponding to
genes, high expression levels of HAUS8, PLXNA1, SHB, UBE2S, DDX39A,
DCAF15, and TSPYL4 showed the most statistically significant associations
with a lower survival probability (p-value <0.01), whereas N4BP2L1 was the
only gene for which a low expression level was associated with higher
mortality. For the analyzed multi-omics biomarkers corresponding to micro
RNA’s, high expression levels of microRNA 376c, microRNA 504 and
microRNA 615 were associated with lower survival probability
(p-value <0.01), and only microRNA 1258 conferred a protective effect at
lower expression levels. Any of the 3 CpG sites screened showed statistically
significant associationwithOS. Interestingly,most of these features are found
in the generated integrative network (Figure 2). The same analysis was run,
this time adjusting the model with the Weiss score and Age (gender was
excluded due the overrepresentation of female samples in the dataset). The
adjusted p-values of the obtained hazard ratios (HR) were still significant
(p-value <0.01) for HAUS8, PLXNA1, DDX39A and microRNA 1258. In
contrast, only a new feature, corresponding to a methylation site, achieved a
statistically significant HR after adjustment: cg25836301 (MEG3). The results
are presented in Table 7.

With the aim of building a prognostic signature of ACC disease
including the most predictive features obtained from multi-omics
integration, and thus with potential application in clinical practice,
we run a model to identify the combination of the previous features
significantly associated with overall survival. By calculating and
comparing the AIC scores of the several possible models, we
selected the best-fit model as the one explaining the greatest

TABLE 7 Univariate and multivariate cox regression results for survival
analysis. The features below are included in the multi-omics signature and
were also available in the validation dataset (GSE49280).

Feature Unadjusted Adjusted

HR (95% CI) p HR (95% CI) p

HAUS8 0.09 (0.03–0.32) 0 0.18 (0.05–0.71) 0.01

hsa-mir-1258 14.93 (3.36–66.37) 0 7.27 (1.56–33.89) 0.01

SHB 0.18 (0.06–0.56) 0 0.32 (0.1–0.98) 0.05

UBE2S 0.21 (0.08–0.57) 0 0.36 (0.12–1.13) 0.08

DDX39A 0.17 (0.06–0.48) 0 0.38 (0.12–1.22) 0.1

PLXNA1 0.23 (0.08–0.64) 0.01 0.19 (0.06–0.58) 0

hsa-mir-376c 0.22 (0.07–0.65) 0.01 0.31 (0.1–0.99) 0.05

hsa-mir-504 0.28 (0.1–0.78) 0.01 0.34 (0.11–1.06) 0.06

TSPYL4 0.24 (0.09–0.68) 0.01 0.38 (0.13–1.1) 0.07

hsa-mir-615 0.16 (0.04–0.7) 0.01 0.31 (0.07–1.39) 0.13

N4BP2L1 3.41 (1.28–9.08) 0.01 1.72 (0.55–5.41) 0.35

DCAF15 0.3 (0.11–0.79) 0.01 0.73 (0.25–2.17) 0.58

cg25836301 2.53 (1.13–5.64) 0.02 5.41 (2.2–13.3) 0

hsa-mir-874 3.04 (1.21–7.61) 0.02 2.75 (1–7.53) 0.05

SNORD113-3 0.3 (0.11–0.79) 0.02 0.37 (0.13–1.03) 0.06

hsa-mir-381 0.3 (0.11–0.8) 0.02 0.46 (0.16–1.31) 0.15

B4GALT3 0.29 (0.1–0.81) 0.02 0.47 (0.16–1.37) 0.17

DUSP12 0.31 (0.12–0.82) 0.02 0.57 (0.21–1.54) 0.27

MEG9 0.35 (0.13–0.93) 0.03 0.39 (0.14–1.04) 0.06

GATA4 0.34 (0.13–0.89) 0.03 0.49 (0.18–1.36) 0.17

hsa-mir-5690 3.94 (1.14–13.61) 0.03 1.52 (0.4–5.72) 0.54

KANSL1-AS1 2.85 (1.02–7.94) 0.04 1.57 (0.55–4.53) 0.4

hsa-mir-487b 0.36 (0.13–1.01) 0.05 0.42 (0.15–1.2) 0.11

CLMP 0.39 (0.15–1) 0.05 0.74 (0.26–2.07) 0.56

TUBB4B 0.37 (0.14–0.99) 0.05 0.88 (0.27–2.9) 0.84

SNORD114-3 0.44 (0.17–1.12) 0.08 0.5 (0.19–1.33) 0.17

ZUP1 0.43 (0.17–1.11) 0.08 0.65 (0.24–1.72) 0.38

C11orf1 2.15 (0.84–5.48) 0.11 2.26 (0.81–6.31) 0.12

FRAT2 0.46 (0.18–1.19) 0.11 0.53 (0.2–1.39) 0.19

MIR770 0.48 (0.19–1.23) 0.13 1 (0.35–2.85) 0.99

hsa-mir-466 2.15 (0.77–5.97) 0.14 1.62 (0.57–4.65) 0.37

MEG3 0.52 (0.2–1.33) 0.17 0.57 (0.21–1.54) 0.27

hsa-mir-181d 1.84 (0.74–4.59) 0.19 1.34 (0.51–3.51) 0.55

VWA5B2 1.7 (0.67–4.33) 0.26 2.82 (1.08–7.36) 0.03

cg16488098 0.64 (0.27–1.54) 0.32 0.74 (0.3–1.78) 0.5

hsa-mir-511 2.08 (0.48–9.05) 0.33 0.76 (0.16–3.59) 0.73

(Continued on following page)
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amount of variation using the fewest possible variables and lower
AIC. A total of 9 features involving 5 genes and 4 micro RNAs
showed the optimal AIC value and were subsequently used to
establish a risk score using the formula: OptMultiSig risk score =
[1.958 x EXP GATA4]+[-22.285 x EXP N4BP2L1]+[1.087 x EXP
KCNJ14]+[3.157 x EXP SNORD1143]+[2.271 x EXP
UBE2S]+[20.908 x EXP microRNA 615]+[-1.173 x EXP
microRNA 1179]+[-19.938 x EXP microRNA 217]+[-20.976 x
EXP microRNA 5690]. According to the median OptMultiSig
risk score of 165.575, we classified patients into low and high-
risk groups comprising 22 samples each. As shown in Figure 5, high-
risk patients showed significant decreased OS as compared to low-
risk ACC patients (p-value = 2.1 × 10−4; HR = 1.13; 95% CI

0,04–0.46), highlighting the utility of the 9 features as an
independent prognostic factor of poor prognosis for ACC.

Discussion

Rare diseases encompass a wide range of disorders, many of
which are characterized by limited treatment options, delayed
diagnoses, and poor prognoses. ACC, as a rare and aggressive
malignancy, exemplifies the challenges faced by patients and
healthcare professionals in diagnosing, managing, and treating
rare diseases. Prognostic evaluation is critical to determine
disease progression and inform treatment decisions. Biomarkers
can play a vital role in predicting the clinical course of ACC,
stratifying patients into risk groups, and enabling personalized
treatment approaches. The identification of staging biomarkers
associated with tumor aggressiveness and metastatic potential
assists in tailoring surveillance strategies and implementing early
interventions in high-risk patients.

Integrative analysis of multi-omics data allows to capture
cellular regulation at different layers, thus bringing the possibility
to build more robust classifiers of biological samples and to discover
new molecular interactions of the underlying diseases. In this study,
we integrated multi-omics data from different origin: RNA-seq gene
expression, miRNA-seq expression and DNA methylation
belonging to the GDC TCGA Adrenocortical Carcinoma (ACC)
datasets (Zheng et al., 2016). The available copy number variants
were discarded due to their usual association with methylation and
gene expression (Shao et al., 2019; Shi et al., 2020), while the somatic
mutations were not completely suitable for the DIABLO
quantitative approach. After the integration, the performed
network analysis identified a specific ACC signature composed of
210 biomarkers (99 genes, 46 micro RNA’s and 65 methylation sites)
with a high power to discriminate early and advanced ACC disease
stages. A total of 28 features from the obtained multi-omics
signature were reported in our CDDI database as biomarkers
associated with ACC. Among them, ALDH1A3, BHMT,
DMGDH, EN1, ICAM5, KCNC3 and PPFIA4 biomarkers coming
from DNA methylation data, CHID1, GATA4, MEG3 and
microRNA 770 from RNA expression data, and DICER1, H19
and KRAS from network analysis. Specifically, ALDH1A3,
BHMT, CHID1, EN1, GATA4, ICAM5 and KCNC3 appeared as
prognostic biomarkers for ACC in experimental stages, and DICER1
in early studies in humans. The higher amount of DNAmethylation
data derived biomarkers associated with ACC disease and the
methylation association with other processes (e.g., CNV) might
be behind the high amount of variance explained by the five
components obtained using DNA methylation data during the
sPLS-DA model construction.

In the case of the third component, all the 25 described RNA-
seq, miRNA-seq and DNA methylation features (with the only
exception of C11orf1 and the cg12138102 methylation site)
belong to the genomic location where the imprinted differentially
methylated region MEG3:TSS-DMR is located (Hernandez Mora
et al., 2018). The expressed copy of the genes present in this region is
always the one inherited from the mother due to the specific
methylation of the CpGs on the father’s copy. This region has
been already associated with hepatocarcinoma, where in fact the

TABLE 7 (Continued) Univariate and multivariate cox regression results for
survival analysis. The features below are included in themulti-omics signature
and were also available in the validation dataset (GSE49280).

Feature Unadjusted Adjusted

HR (95% CI) p HR (95% CI) p

SIAE 1.55 (0.63–3.84) 0.34 0.93 (0.35–2.52) 0.89

YJEFN3 0.66 (0.27–1.65) 0.38 0.66 (0.25–1.78) 0.42

ST6GALNAC4 0.66 (0.27–1.66) 0.38 0.7 (0.28–1.77) 0.45

GALNS 0.67 (0.27–1.67) 0.39 0.62 (0.24–1.57) 0.31

cg25063710 1.4 (0.62–3.16)) 0.42 1.08 (0.47–2.46) 0.86

hsa-mir-216a 1.43 (0.58–3.51) 0.44 1.23 (0.49–3.05) 0.66

JTB 1.43 (0.58–3.58) 0.44 0.9 (0.34–2.35) 0.83

PAQR5 0.7 (0.28–1.76) 0.46 0.71 (0.26–1.93) 0.51

ASF1A 1.41 (0.57–3.53) 0.46 0.92 (0.36–2.35) 0.86

CLASRP 0.74 (0.3–1.83) 0.51 0.62 (0.23–1.7) 0.35

hsa-mir-217 1.35 (0.54–3.37) 0.52 1.12 (0.44–2.88) 0.81

hsa-mir-4521 0.74 (0.29–1.89) 0.53 1.38 (0.52–3.69) 0.52

KCNJ14 1.34 (0.54–3.34) 0.53 1.08 (0.43–2.7) 0.88

STAC3 1.23 (0.5–3.05) 0.65 1.34 (0.53–3.39) 0.53

CAP2 1.23 (0.5–3.02) 0.66 0.9 (0.35–2.34) 0.84

RNPEP 0.82 (0.33–2.02) 0.67 0.37 (0.14–0.99) 0.05

hsa-mir-3912 1.17 (0.47–2.91) 0.74 1.41 (0.54–3.69) 0.48

UGGT2 0.87 (0.35–2.14) 0.76 0.98 (0.39–2.47) 0.96

hsa-mir-1179 1.13 (0.46–2.79) 0.79 1.06 (0.42–2.69) 0.9

hsa-mir-4326 0.9 (0.36–2.23) 0.81 1.48 (0.57–3.83) 0.42

CHID1 0.91 (0.37–2.24) 0.83 0.78 (0.31–1.95) 0.59

AVPR1A 1.1 (0.45–2.72) 0.83 0.81 (0.31–2.16) 0.68

hsa-mir-190b 1.1 (0.44–2.75) 0.83 0.91 (0.35–2.39) 0.85

ACSS2 1.08 (0.43–2.69) 0.87 1.13 (0.44–2.92) 0.8

TEDC1 1.07 (0.43–2.64) 0.88 1.47 (0.57–3.76) 0.43

D2HGDH 1.06 (0.43–2.62) 0.9 0.81 (0.3–2.23) 0.69

PRELID3A 1 (0.4–2.45) 0.99 0.66 (0.25–1.7) 0.39
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methylation differences were due to copy number alterations caused
by the loss of the mother’s copy (Martin-Trujillo et al., 2017).
MEG3 is an inhibitor of the cell proliferation, interacting, for
example, with p53, and the likely loss of the expressed copy
(reflected on the expression of genes and micro RNA’s and
methylation changes) would unsurprisingly imply an effect on
the variance and stage classification of the ACC tumors.

A topological regulator identified through the network analysis,
the H19 imprinted maternally expressed transcript, is also located
very close to the IGF2 well-known ACC biomarker, belonging both
to a genome region also regulated by imprinting (Hernandez Mora
et al., 2018). Belonging to this region, there are also the well-known
MIR483 predictive ACC biomarker (Chabre et al., 2013) and the
MIR675 detected in component 4. Again, it would be not surprising
that any methylation change in this region, and their derived
abnormal co-expression, could have some impact on molecular
networks regulated by any of them, highlighting the utility of our
systems biology-based approach combining multi-omics data to
unravel novel mechanisms leading to tumorigenesis. Furthermore, a
total of 14 microRNAs from the multi-omics signature are
biomarkers for ACC in experimental or early studies in human
stages as extracted from CDDI data. Together with DNA
methylation, micro RNA aberrant expression offers an additional
layer of epigenetic control that could be used as therapeutic target.

An external dataset with available multi-omics data was
leveraged as a validation dataset to evaluate the performance of
the identified biomarkers as a prognostic signature. Univariate Cox
regression analysis was independently performed using the
identified biomarkers. High expression of HAUS8, PLXNA1, SHB,
UBE2S, DDX39A, DCAF15, TSPYL4, microRNA 376c, microRNA
504 and microRNA 615 was significantly associated with lower
overall survival, while patients with low expression of N4BP2L1
andmicroRNA 1258were associated with decreased survival. Then, a

multivariate Cox regression was performed using the Weiss score
and age as covariates, confirming the robustness of most of the
identified biomarkers for predicting the overall survival in the
validation cohort.

Among the multi-omics biomarkers significantly associated
with OS, only micro RNA’s were found to be ACC biomarkers in
CDDI. Indeed, microRNA 376c (Veronez et al., 2022), microRNA
504 (Koperski et al., 2017) and microRNA 615 (Assié et al., 2014)
have been reported previously as potential biomarker candidates for
ACC disease profiling. One of the micro RNA’s significantly
associated with ACC survival, microRNA 376c was reported in
early studies for disease diagnosis(Chabre et al., 2013), and also
showed experimental evidence as a potential candidate for ACC
disease profiling. However, none of the genes influencing OS have
been previously associated with ACC and might represent potential
novel disease biomarkers. Concordantly, SHB expression was
associated with shorter survival time, co-expression of immune
cell and vascular related genes in human Acute Myeloid
Leukemia (AML) (Jamalpour et al., 2017). UBE2S was found to
be aberrantly expressed in almost all human cancers in a previous
pan-cancer study, and elevated UBE2S expression was unfavorably
associated with prognosis and pathological stage (Bao et al., 2022).
In addition, N4BP2L1 has been shown to affect the insulin signaling
pathway (Watanabe et al., 2021), consistent with the role of
IGF2 expression in the pathophysiology of ACC (Pereira et al.,
2019).

Then, a multivariate Cox model and step analysis was used
for model optimization to define the optimal prognostic
signature and found that this signature was a potential
independent prognostic factor for ACC patients. The 9-
features signature contained 5 genes and 4 micro RNAs with
roles in cancer progression. For instance, GATA4, identified as an
ACC biomarker, is thought to influence proliferation by

FIGURE 5
Kaplan-Meier curve with optimal features from the identified multi-omics signature (OptMultiSig) using OS from high and low risk ACC patients in
the external dataset. A Forest plot with Hazard Ratio information is included.
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regulating transcription in several cancer types (Zheng and
Blobel, 2010); KCNJ14 is a biomarker for cancer progression
and development (Alasiri, 2023); overexpression of the small
nucleolar RNA SNORD1143 was observed in AML and Acute
Promyelocytic Leukemia (APL) (Liuksiala et al., 2014).
Regarding micro RNAs, upregulation of microRNA 615, also
identified as an ACC biomarker, was found to regulate several
cancer pathways, and importantly was found to inhibit
IGF2 in several cancer types (Godínez-Rubí and Ortuño-
Sahagún, 2020). MicroRNA 1179 was found to inhibit
proliferation and invasion in pancreatic cancer cells through
the inhibition of E2F5 (Lin et al., 2018). MicroRNA 217
showed a tumor suppressor role in pancreatic cancer by
downregulating ATD2 (Dutta et al., 2022); and microRNA
5690 was also included in a pathological grading signature for
lung adenocarcinoma (Yang et al., 2020).

Our proposed workflow is key for rare diseases such as ACC
due of the limited number of studies. Using the transversal
power that the use of multiple OMICS can bring, we could
combine different little evidence from scarce data, resulting in
prognostic value and potential translation into clinical research
and diagnostics. Although subtle correlations were found
between the identified multi-omics components and
important ACC clinical parameters, the obtained coefficients
are affected by the limited sample size of the study, and a larger
cohort can undoubtedly strengthen such associations. In
addition, we showed that network analysis can expand the
discovery of important molecular players in diseases.

Conclusion

These results demonstrate the usefulness of combining
Clarivate´s systems biology tools with molecular signatures
derived from multi-omics experiments to identify biologically
meaningful biomarkers. Given the low prevalence of ACC, large
and comprehensive studies are missing to fully understand the
molecular alterations and the relevant signaling pathways altered
in these patients. The use of multi-omics and systems biology
methods can identify new targets or biomarkers that could be
clinically relevant in the form of molecular diagnostic tools such
as quantitative polymerase chain reaction (qPCR). Owing to the
high sensitivity and specificity of qPCR, together with its
multiplexing capacity, the identified prognostic multi-omics
signature could be used in clinical practice to tailor clinical
decisions to individual ACC patient prognostic profiles, based on
accurate characterization of the expression profile of included genes
and microRNAs. The presented workflow contributes to improving
disease stratification and treatment decision support not only for
ACC, but also for other rare diseases with a limited amount of data
available.
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