76 research outputs found

    Prospective longitudinal evaluation of treatment-related toxicity and health-related quality of life during the first year of treatment for pediatric acute lymphoblastic leukemia

    Full text link
    Background: Pediatric acute lymphoblastic leukemia (ALL) therapy is accompanied by treatment-related toxicities (TRTs) and impaired quality of life. In Australia and New Zealand, children with ALL are treated with either Children’s Oncology Group (COG) or international Berlin-Frankfurt-Munster (iBFM) Study Group-based therapy. We conducted a prospective registry study to document symptomatic TRTs (venous thrombosis, neurotoxicity, pancreatitis and bone toxicity), compare TRT outcomes to retrospective TRT data, and measure the impact of TRTs on children’s general and cancer-related health-related quality of life (HRQoL) and parents’ emotional well-being. Methods: Parents of children with newly diagnosed ALL were invited to participate in the ASSET (Acute Lymphoblastic Leukaemia Subtypes and Side Effects from Treatment) study and a prospective, longitudinal HRQoL study. TRTs were reported prospectively and families completed questionnaires for general (Healthy Utility Index Mark 3) and cancer specific (Pediatric Quality of Life Inventory (PedsQL)-Cancer Module) health related quality of life as well the Emotion Thermometer to assess emotional well-being. Results: Beginning in 2016, 260 pediatric patients with ALL were enrolled on the TRT registry with a median age at diagnosis of 59 months (range 1–213 months), 144 males (55.4%), majority with Pre-B cell immunophenotype, n = 226 (86.9%), 173 patients (66.5%) treated according to COG platform with relatively equal distribution across risk classification sub-groups. From 2018, 79 families participated in the HRQoL study through the first year of treatment. There were 74 TRT recorded, reflecting a 28.5% risk of developing a TRT. Individual TRT incidence was consistent with previous studies, being 7.7% for symptomatic VTE, 11.9% neurotoxicity, 5.4% bone toxicity and 5.0% pancreatitis. Children’s HRQoL was significantly lower than population norms throughout the first year of treatment. An improvement in general HRQoL, measured by the HUI3, contrasted with the lack of improvement in cancer-related HRQoL measured by the PedsQL Cancer Module over the first 12 months. There were no persisting differences in the HRQoL impact of COG compared to iBFM therapy. Conclusions: It is feasible to prospectively monitor TRT incidence and longitudinal HRQoL impacts during ALL therapy. Early phases of ALL therapy, regardless of treatment platform, result in prolonged reductions in cancer-related HRQoL

    Preclinical efficacy of azacitidine and venetoclax for infant KMT2A-rearranged acute lymphoblastic leukemia reveals a new therapeutic strategy

    Get PDF
    Infants with KMT2A-rearranged B-cell acute lymphoblastic leukemia (ALL) have a dismal prognosis. Survival outcomes have remained static in recent decades despite treatment intensification and novel therapies are urgently required. KMT2A-rearranged infant ALL cells are characterized by an abundance of promoter hypermethylation and exhibit high BCL-2 expression, highlighting potential for therapeutic targeting. Here, we show that hypomethylating agents exhibit in vitro additivity when combined with most conventional chemotherapeutic agents. However, in a subset of samples an antagonistic effect was seen between several agents. This was most evident when hypomethylating agents were combined with methotrexate, with upregulation of ATP-binding cassette transporters identified as a potential mechanism. Single agent treatment with azacitidine and decitabine significantly prolonged in vivo survival in KMT2A-rearranged infant ALL xenografts. Treatment of KMT2A-rearranged infant ALL cell lines with azacitidine and decitabine led to differential genome-wide DNA methylation, changes in gene expression and thermal proteome profiling revealed the target protein-binding landscape of these agents. The selective BCL-2 inhibitor, venetoclax, exhibited in vitro additivity in combination with hypomethylating or conventional chemotherapeutic agents. The addition of venetoclax to azacitidine resulted in a significant in vivo survival advantage indicating the therapeutic potential of this combination to improve outcome for infants with KMT2A-rearranged ALL

    Targeting cytokine- and therapy-induced PIM1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma

    Get PDF
    T-cell acute lymphoblastic leukemia and lymphoma (T-ALL/T-LBL) are aggressive hematological malignancies that are currently treated with high dose chemotherapy. Over the last years, the search towards novel and less toxic therapeutic strategies for T-ALL/T-LBL patients has largely focused on the identification of cell intrinsic properties of the tumor cell. However, non cell autonomous activation of specific oncogenic pathways might also offer opportunities that could be exploited at the therapeutic level. In line with this, we here show that endogenous IL7 can increase the expression of the oncogenic kinase PIM1 in CD127+ T-ALL/T-LBL, thereby rendering these tumor cells sensitive to in vivo PIM inhibition. In addition, using different CD127+ T-ALL/T-LBL xenograft models, we also reveal that residual tumor cells, which remain present after short-term in vivo chemotherapy, display consistent upregulation of PIM1 as compared to bulk non-treated tumor cells. Notably, this effect was transient as increased PIM1 levels were not observed in reestablished disease after abrogation of the initial chemotherapy. Furthermore, we uncover that this phenomenon is, at least in part, mediated by the ability of glucocorticoids to cause transcriptional upregulation of IL7RA in T-ALL/T-LBL PDX cells, ultimately resulting in non-cell autonomous PIM1 upregulation by endogenous IL7. Finally, we confirm in vivo that chemotherapy in combination with a pan-PIM inhibitor can improve leukemia survival in a PDX model of CD127+ T-ALL. Altogether, our work reveals that IL7 and glucocorticoids coordinately drive aberrant activation of PIM1 and suggests that IL7 responsive CD127+ T-ALL and T-LBL patients could benefit from PIM inhibition during induction chemotherapy

    Malignant melanoma in children and adolescents treated in pediatric oncology centers: an Australian and New Zealand Children's Oncology Group (ANZCHOG) Study

    Get PDF
    Objectives: Unlike adults, malignant melanoma in children and adolescents is rare. In adult melanoma, significant progress in understanding tumor biology and new treatments, including targeted therapies and immunotherapy have markedly improved overall survival. In sharp contrast, there is a paucity of data on the biology and clinical behavior of pediatric melanoma. We report a national case series of all pediatric and adolescent malignant melanoma presenting to ANZCHOG Childhood Cancer Centers in Australia and New Zealand. Methods: A retrospective, descriptive, multi-center study was undertaken to identify patients less than 18 years of age treated for cutaneous malignant melanoma over a twenty-year period (1994 to 2014). Data on clinical characteristics, histopathology, and extent of disease, treatment and follow-up are described. Results: A total of 37 cases of malignant melanoma were identified from all of the Australasian tertiary Childhood Cancer Centers. The median age was 10 years (range 1 month – 17 years). Clinically, the most common type of lesion was pigmented, occurring in sixteen (57%) patients, whilst amelanotic was seen in 7 patients (25%). In 11 (27.9%) the Breslow thickness was greater than 4mm. A total of 11 (29.7%) patients relapsed and 90% of these died of disease. Five-year event free survival (EFS) and overall survival were 63.2 (95% CI: 40.6 – 79.1) and 67.7% (95% CI: 45.1 – 82.6) respectively. Conclusion: Our data confirms that melanoma is a rare presentation of cancer to tertiary Australasian Childhood Cancer Centers with only 37 cases identified over two decades. Notably, melanoma managed in Childhood Cancer Centers is frequently at an advanced stage, with a high percentage of patients relapsing and the majority of these patients who relapsed died of disease. This study confirms previous clinical and prognostic information to support the early multidisciplinary management in Childhood Cancer Centers, in conjunction with expert adult melanoma centers, of this rare and challenging patient group.Anne L. Ryan, Charlotte Burns, Aditya K. Gupta, Ruvishani Samarasekera, David S. Ziegler, Maria L. Kirby, Frank Alvaro, Peter Downie, Stephen J. Laughton, Siobhan Cross, Timothy Hassall, Geoff B. McCowage, Jordan R. Hansford, Rishi S. Kotecha and Nicholas G. Gottard

    Delivery of PEGylated liposomal doxorubicin by bispecific antibodies improves treatment in models of high-risk childhood leukemia

    Full text link
    High-risk childhood leukemia has a poor prognosis because of treatment failure and toxic side effects of therapy. Drug encapsulation into liposomal nanocarriers has shown clinical success at improving biodistribution and tolerability of chemotherapy. However, enhancements in drug efficacy have been limited because of a lack of selectivity of the liposomal formulations for the cancer cells. Here, we report on the generation of bispecific antibodies (BsAbs) with dual binding to a leukemic cell receptor, such as CD19, CD20, CD22, or CD38, and methoxy polyethylene glycol (PEG) for the targeted delivery of PEGylated liposomal drugs to leukemia cells. This liposome targeting system follows a "mix-and-match" principle where BsAbs were selected on the specific receptors expressed on leukemia cells. BsAbs improved the targeting and cytotoxic activity of a clinically approved and low-toxic PEGylated liposomal formulation of doxorubicin (Caelyx) toward leukemia cell lines and patient-derived samples that are immunophenotypically heterogeneous and representative of high-risk subtypes of childhood leukemia. BsAb-assisted improvements in leukemia cell targeting and cytotoxic potency of Caelyx correlated with receptor expression and were minimally detrimental in vitro and in vivo toward expansion and functionality of normal peripheral blood mononuclear cells and hematopoietic progenitors. Targeted delivery of Caelyx using BsAbs further enhanced leukemia suppression while reducing drug accumulation in the heart and kidneys and extended overall survival in patient-derived xenograft models of high-risk childhood leukemia. Our methodology using BsAbs therefore represents an attractive targeting platform to potentiate the therapeutic efficacy and safety of liposomal drugs for improved treatment of high-risk leukemia

    Pediatric meningiomas in The Netherlands 1974–2010: a descriptive epidemiological case study

    Get PDF
    The purpose of this study was to review the epidemiology and the clinical, radiological, pathological, and follow-up data of all surgically treated pediatric meningiomas during the last 35 years in The Netherlands. Patients were identified in the Pathological and Anatomical Nationwide Computerized Archive database, the nationwide network and registry of histopathology and cytopathology in The Netherlands. Pediatric patients of 18 years or younger at first operation in 1974-2009 with the diagnosis meningioma were included. Clinical records, follow-up data, radiological findings, operative reports, and pathological examinations were reviewed. In total, 72 patients (39 boys) were identified. The incidence of operated meningiomas in the Dutch pediatric population is 1:1,767,715 children per year. Median age at diagnosis was 13 years (range 0-18 years). Raised intracranial pressure and seizures were the most frequent signs at presentation. Thirteen (18 %) patients had neurofibromatosis type 2 (NF2). Fifty-three (74 %) patients had a meningioma World Health Organization grade I. Total resection was achieved in 35 of 64 patients. Fifteen patients received radiotherapy postoperatively. Mean follow-up was 4.8 years (range 0-27.8 years). Three patients died as a direct result of their meningioma within 3 years. Four patients with NF2 died as a result of multiple tumors. Nineteen patients had disease progression, requiring additional treatment. Meningiomas are extremely rare in the pediatric population; 25 % of all described meningiomas show biological aggressive behavior in terms of disease progression, requiring additional treatment. The 5-year survival is 83.9 %, suggesting that the biological behavior of pediatric menigiomas is more aggressive than that of its adult counterpart

    Multidimensional Single Cell Based STAT Phosphorylation Profiling Identifies a Novel Biosignature for Evaluation of Systemic Lupus Erythematosus Activity

    Get PDF
    INTRODUCTION: Dysregulated cytokine action on immune cells plays an important role in the initiation and progress of systemic lupus erythematosus (SLE), a complex autoimmune disease. Comprehensively quantifying basal STATs phosphorylation and their signaling response to cytokines should help us to better understand the etiology of SLE. METHODS: Phospho-specific flow cytometry was used to measure the basal STAT signaling activation in three immune cell types of peripheral-blood mononuclear cells from 20 lupus patients, 9 rheumatoid arthritis (RA) patients and 13 healthy donors (HDs). A panel of 27 cytokines, including inflammatory cytokines, was measured with Bio-Plex™ Human Cytokine Assays. Serum Prolactin levels were measured with an immunoradiometric assay. STAT signaling responses to inflammatory cytokines (interferon α [IFNα], IFNγ, interleukin 2 [IL2], IL6, and IL10) were also monitored. RESULTS: We observed the basal activation of STAT3 in SLE T cells and monocytes, and the basal activation of STAT5 in SLE T cells and B cells. The SLE samples clustered into two main groups, which were associated with the SLE Disease Activity Index 2000, their erythrocyte sedimentation rate, and their hydroxychloroquine use. The phosphorylation of STAT5 in B cells was associated with cytokines IL2, granulocyte colony-stimulating factor (G-CSF), and IFNγ, whereas serum prolactin affected STAT5 activation in T cells. The responses of STAT1, STAT3, and STAT5 to IFNα were greatly reduced in SLE T cells, B cells, and monocytes, except for the STAT1 response to IFNα in monocytes. The response of STAT3 to IL6 was reduced in SLE T cells. CONCLUSIONS: The basal activation of STATs signaling and reduced response to cytokines may be helpful us to identify the activity and severity of SLE

    Novel Echocardiographic Biomarkers in the Management of Atrial Fibrillation

    Get PDF
    Purpose of Review: Atrial fibrillation (AF) is the most common arrhythmia in adults. The number of patients with AF is anticipated to increase annually, mainly due to the aging population alongside improved arrhythmia detection. AF is associated with a significantly elevated risk of hospitalization, stroke, thromboembolism, heart failure, and all-cause mortality. Echocardiography is one of the key components of routine assessment and management of AF. Therefore, the aim of this review is to briefly summarize current knowledge on “novel” echocardiographic parameters that may be of value in the management of AF patients. Recent Findings: Novel echocardiographic biomarkers and their clinical application related to the management of AF have been taken into consideration. Both standard parameters such as atrial size and volume but also novels like atrial strain and tissue Doppler techniques have been analyzed. Summary: A number of novel echocardiographic parameters have been proven to enable early detection of left atrial dysfunction along with increased diagnosis accuracy. This concerns particularly experienced echocardiographers. Hence, these techniques might improve the prediction of stroke and thromboembolic events among AF patients and need to be further developed and disseminated. Nonetheless, even the standard imaging parameters could be of significant value and should not be discontinued in everyday clinical practice. © 2019, The Author(s)
    corecore