1,073 research outputs found

    Hadron-Hadron Interactions from Nf=2+1+1N_f=2+1+1 Lattice QCD: isospin-1 KKKK scattering length

    Full text link
    We present results for the interaction of two kaons at maximal isospin. The calculation is based on Nf=2+1+1N_f=2+1+1 flavour gauge configurations generated by the European Twisted Mass Collaboration with pion masses ranging from about 230230 to 450MeV450\,\textrm{MeV} at three values of the lattice spacing. The elastic scattering length a0I=1a_0^{I=1} is calculated at several values of the bare strange and light quark masses. We find MKa0=0.385(16)stat(12+0)ms(5+0)ZP(4)rfM_K a_0 = -0.385(16)_{\textrm{stat}} (^{+0}_{-12})_{m_s}(^{+0}_{-5})_{Z_P}(4)_{r_f} as the result of a combined extrapolation to the continuum and to the physical point, where the first error is statistical, and the three following are systematical. This translates to a0=0.154(6)stat(5+0)ms(2+0)ZP(2)rffma_0 = -0.154(6)_{\textrm{stat}}(^{+0}_{-5})_{m_s} (^{+0}_{-2})_{Z_P}(2)_{r_f}\,\textrm{fm}.Comment: 28 pages, 18 tables, 14 figure

    A comprehensive view of the epigenetic landscape part I : DNA methylation, passive and active DNA demethylation pathways and histone variants

    Get PDF
    In multicellular organisms, all the cells are genetically identical but turn genes on or off at the right time to promote differentiation into specific cell types. The regulation of higher-order chromatin structure is essential for genome-wide reprogramming and for tissue-specific patterns of gene expression. The complexity of the genome is regulated by epigenetic mechanisms, which act at the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in many biological processes, including genomic imprinting, X-chromosome inactivation, heterochromatin formation, and transcriptional regulation, as well as DNA damage repair. In this review, we summarize the recent understanding of DNA methylation, cytosine derivatives, active and passive demethylation pathways as well as histone variants. DNA methylation is one of the well-characterized epigenetic signaling tools. Cytosine methylation of promoter regions usually represses transcription but methylation in the gene body may have a positive correlation with gene expression. The attachment of a methyl group to cytosine residue in the DNA sequence is catalyzed by enzymes of the DNA methyltransferase family. Recent studies have shown that the Ten-Eleven translocation family enzymes are involved in stepwise oxidation of 5-methylcytosine, creating new cytosine derivatives including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Additionally, histone variants into nucleosomes create another strategy to regulate the structure and function of chromatin. The replacement of canonical histones with specialized histone variants regulates accessibility of DNA, and thus may affect multiple biological processes, such as replication, transcription, DNA repair, and play a role in various disorders such as cancer

    A Comprehensive View of the Epigenetic Landscape Part I: DNA Methylation, Passive and Active DNA Demethylation Pathways and Histone Variants

    Get PDF
    In multicellular organisms, all the cells are genetically identical but turn genes on or off at the right time to promote differentiation into specific cell types. The regulation of higher-order chromatin structure is essential for genome-wide reprogramming and for tissue-specific patterns of gene expression. The complexity of the genome is regulated by epigenetic mechanisms, which act at the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in many biological processes, including genomic imprinting, X-chromosome inactivation, heterochromatin formation, and transcriptional regulation, as well as DNA damage repair. In this review, we summarize the recent understanding of DNA methylation, cytosine derivatives, active and passive demethylation pathways as well as histone variants. DNA methylation is one of the well-characterized epigenetic signaling tools. Cytosine methylation of promoter regions usually represses transcription but methylation in the gene body may have a positive correlation with gene expression. The attachment of a methyl group to cytosine residue in the DNA sequence is catalyzed by enzymes of the DNA methyltransferase family. Recent studies have shown that the Ten-Eleven translocation family enzymes are involved in stepwise oxidation of 5-methylcytosine, creating new cytosine derivatives including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine. Additionally, histone variants into nucleosomes create another strategy to regulate the structure and function of chromatin. The replacement of canonical histones with specialized histone variants regulates accessibility of DNA, and thus may affect multiple biological processes, such as replication, transcription, DNA repair, and play a role in various disorders such as cancer

    Nucleon scalar and tensor charges using lattice QCD simulations at the physical value of the pion mass

    Full text link
    We present results on the light, strange and charm nucleon scalar and tensor charges from lattice QCD, using simulations with Nf=2N_f=2 flavors of twisted mass Clover-improved fermions with a physical value of the pion mass. Both connected and disconnected contributions are included, enabling us to extract the isoscalar, strange and charm charges for the first time directly at the physical point. Furthermore, the renormalization is computed non-perturbatively for both isovector and isoscalar quantities. We investigate excited state effects by analyzing several sink-source time separations and by employing a set of methods to probe ground state dominance. Our final results for the scalar charges are gSu=5.20(42)(15)(12)g_S^u = 5.20(42)(15)(12), gSd=4.27(26)(15)(12)g_S^d = 4.27(26)(15)(12), gSs=0.33(7)(1)(4)g_S^s=0.33(7)(1)(4), gSc=0.062(13)(3)(5)g_S^c=0.062(13)(3)(5) and for the tensor charges gTu=0.782(16)(2)(13)g_T^u = 0.782(16)(2)(13), gTd=0.219(10)(2)(13)g_T^d = -0.219(10)(2)(13), gTs=0.00319(69)(2)(22)g_T^s=-0.00319(69)(2)(22), gTc=0.00263(269)(2)(37)g_T^c=-0.00263(269)(2)(37) in the MS\overline{\rm MS} scheme at 2~GeV. The first error is statistical, the second is the systematic error due to the renormalization and the third the systematic arising from possible contamination due to the excited states.Comment: 20 pages and 13 figure

    Дифференциально−диагностические нейрофизиологические корреляты эмоционально−личностных и поведенческих расстройств у подростков с мозговой дисфункцией

    Get PDF
    Представлены результаты исследования функциональной активности головного мозга у подростков с мозговой дисфункцией и эмоциональными, личностными, поведенческими расстройствами. Выявлены нейрофизиологические корреляты изменений характера и поведения больных подростков.The findings of brain functional activity investigation in teenagers with cerebral dysfunction as well as emotional, personality, behavioral disorders are reported. Neurophysiological correlates of the character and behavior changes in teen−agers were revealed

    Discrimination of bovine milk from non-dairy milk by lipids fingerprinting using routine matrix-assisted laser desorption ionization mass spectrometry

    Get PDF
    An important sustainable development goal for any country is to ensure food security by producing a sufficient and safe food supply. This is the case for bovine milk where addition of non-dairy milks such as vegetables (e.g., soya or coconut) has become a common source of adulteration and fraud. Conventionally, gas chromatography techniques are used to detect key lipids (e.g., triacylglycerols) has an effective read-out of assessing milks origins and to detect foreign milks in bovine milks. However, such approach requires several sample preparation steps and a dedicated laboratory environment, precluding a high throughput process. To cope with this need, here, we aimed to develop a novel and simple method without organic solvent extractions for the detection of bovine and non-dairy milks based on lipids fingerprint by routine MALDI-TOF mass spectrometry (MS). The optimized method relies on the simple dilution of milks in water followed by MALDI-TOF MS analyses in the positive linear ion mode and using a matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid (super-DHB) solubilized at 10 mg/mL in 70% ethanol. This sensitive, inexpensive, and rapid method has potential for use in food authenticity applications
    corecore