18 research outputs found

    Strengthening mechanisms in thermomechanically processed NbTi-microalloyed steel

    Get PDF
    The effect of deformation temperature on microstructure and mechanical properties was investigated for thermomechanically processed NbTi-microalloyed steel with ferrite-pearlite microstructure. With a decrease in the finish deformation temperature at 1348 K to 1098 K (1075 °C to 825 °C) temperature range, the ambient temperature yield stress did not vary significantly, work hardening rate decreased, ultimate tensile strength decreased, and elongation to failure increased. These variations in mechanical properties were correlated to the variations in microstructural parameters (such as ferrite grain size, solid solution concentrations, precipitate number density and dislocation density). Calculations based on the measured microstructural parameters suggested the grain refinement, solid solution strengthening, precipitation strengthening, and work hardening contributed up to 32 pct, up to 48 pct, up to 25 pct, and less than 3 pct to the yield stress, respectively. With a decrease in the finish deformation temperature, both the grain size strengthening and solid solution strengthening increased, the precipitation strengthening decreased, and the work hardening contribution did not vary significantly

    Bauschinger effect in microalloyed steels: part I. Dependence on dislocation-particle interaction

    Get PDF
    The Bauschinger effect (yield stress decreasing at the start of reverse deformation after forward prestrain) is an important factor in strength development for cold metal forming technology. In steels, the magnitude of the Bauschinger effect depends on composition, through the presence of microalloy precipitates, and prior processing, through the size and distribution of microalloy precipitates and presence of retained work hardening. In this article, the microstructures of two (Nb- and Nb-V-microalloyed) steel plates, in terms of (Ti,Nb,V,Cu)-rich particle distributions and dislocation densities, have been quantitatively related to the Bauschinger parameters for the same processing conditions. For the 12- to 50-nm effective particle size range, the Bauschinger stress parameter increases with the particle number density and dislocation density increase. The relative influence of these two microstructure parameters is discussed

    Australian parks and leisure

    Get PDF
    The Bauschinger effect (a reduced yield stress at the start of reverse deformation following forward prestrain) is an important factor of strength development for cold metal forming technology. In steels, the magnitude of the Bauschinger effect depends on composition, through the presence of microalloy precipitates, and prior processing, through the size and distribution of the microalloy precipitates and the presence of retained work hardening. In this article, the parameters of the Bauschinger effect and work hardening (coefficient and exponent) in forward and reverse deformations were quantitatively related to the particle number density and dislocation density for two high-strength low-alloy (HSLA) steels. An example of the application of the obtained dependences is discussed with respect to the strength development during UOE forming of large diameter line pipes
    corecore