225 research outputs found

    Analytical time-like geodesics

    Full text link
    Time-like orbits in Schwarzschild space-time are presented and classified in a very transparent and straightforward way into four types. The analytical solutions to orbit, time, and proper time equations are given for all orbit types in the form r=r(\lambda), t=t(\chi), and \tau=\tau(\chi), where \lambda\ is the true anomaly and \chi\ is a parameter along the orbit. A very simple relation between \lambda\ and \chi\ is also shown. These solutions are very useful for modeling temporal evolution of transient phenomena near black holes since they are expressed with Jacobi elliptic functions and elliptic integrals, which can be calculated very efficiently and accurately.Comment: 15 pages, 10 figures, accepted by General Relativity and Gravitatio

    Phenolics content and antioxidant capacity of commercial red fruit juices

    Get PDF
    The content of phenolics: total phenols (TP), flavonoids (TF), anthocyanins (TA) and hydroxicinnamic acid as well as the total antioxidant capacity (TAC) in nine commercial red fruit juices (sour cherry, black currant, red grape) produced in Serbia were evaluated. The total compounds content was measured by spectrophotometric methods, TAC was determined using DPPH assays, and individual anthocyanins and hydroxycinnamic acids was determined using HPLC-DAD methods. Among the examined fruit juices, the black currant juices contained the highest amounts of all groups of the phenolics and exhibited strong antioxidant capacity. The amount of anthocyanins determined by HPLC method ranged from 92.36 to 512.73 mg/L in red grape and black currant juices, respectively. The anthocyanins present in the investigated red fruit juices were derivatives of cyanidin, delphinidin, petunidin, peonidin and malvidin. The predominant phenolic acid was neoclorogenic acid in sour cherry, caffeic acid in black currant, and p-coumaric acid in black grape juices. Generally, the red fruit juices produced in the Serbia are a rich source of the phenolic, which show evident antioxidant capacity

    Polyphenol content and antioxidant activity of sour cherries from Serbia

    Get PDF
    The aim of this study is to evaluate the content of phenolics: the total phenols (TP), flavonoids (TF), anthocyanins (TA), as well as the total antioxidant capacity (TAC) in three sour cherry cultivars (Prunus cerasus L.) introduced to the southeast Serbia climate conditions. Among the researched sour cherries, ā€˜Oblacinskaā€™ cultivar contained the highest amounts of all groups of phenolics, followed by ā€˜Cigancicaā€™ > ā€˜Marelaā€™. A significant difference were observed in the phenolic content among different cultivars and growing seasons (p<0.05), and the phenolic compounds were significantly higher in the growing season 2009. The examined cultivars possess a high antioxidant capacity, and all phenolics of highy correlation with TAC. The following compounds were identified and quantified using HPLC-DAD: 4 anthocyanins, the most abundant of which was cyaniding-3-glucoside in ā€˜Marelaā€™ and ā€˜Oblacinskaā€™, and cyanidin-3-glucosylrutinoside in ā€˜Cigancicaā€™, and 4 hydroxycinnamic acids, the most abundant of which was neochlorogenic acid in all sour cherry cultivars. The growing and ripening process on the tree of sour cherry cv. Oblacinska was evaluated, also. The results showed significant increases in total phenols during the ripening, the total anthocyanins and total antioxidant capacity and 4 quantified anthocyanins, however the neochlorogenic acid decreased during the ripening. The study indicated that the growing and climate conditions in southeast Serbia are convenient for introducing sour cherry cultivars

    The correlation of metal content in medicinal plants and their water extracts

    Get PDF
    The quality of some medicinal plants and their water extracts from South East Serbia is determined on the basis of metal content using atomic absorption spectrometry. The two methods were used for the preparation of water extracts, to examine the impact of the preparation on the content of metals in them. Content of investigated metals in both water extracts is markedly lower then in medicinal plants, but were higher in water extract prepared by method (I), with exception of lead content. The coefficients of extraction for the observed metal can be represented in the following order: Zn > Mn > Pb > Cu > Fe. Correlation coefficients between the metal concentration in the extract and total metal content in plant material vary in the range from 0.6369 to 0.9956. This indicates need the plants to be collected and grown in the unpolluted area and to examine the metal content. The content of heavy metals in the investigated medicinal plants and their water extracts is below the maximum allowable values, so they are safe to use

    Macronutrient contents in the leaves and fruits of red raspberry as affected by liming in an extremely acid soil

    Get PDF
    The study evaluates the effect of liming materials application in combination with NPK fertilizer and borax on macronutrient contents (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)), in an extremely acid soil and raspberry leaves and fruits during a two-year period. Liming increased soil pH, N mineral content, P, Ca and Mg soil content, while K content either increased (dolomite and borax application), or decreased (lime application). The N and P contents in raspberry leaves after liming increased significantly, but P content remained below the optimal values. Some treatments with lime caused a decrease in K content in leaves, while dolomite and borax application increased K content. Initially optimal Ca content in leaves increased significantly in the treatments with lime, but decreased after dolomite application. The Mg content in leaves increased after dolomite and borax application, but mainly remained below optimal values. Liming either did not alter or only slightly altered macronutrient contents in raspberry fruits

    Phytochemical Analysis and Total Antioxidant Capacity of Rhizome, Above-Ground Vegetative Parts and Flower of Three Iris Species

    Get PDF
    This study was aimed at investigating the phytochemical composition and antioxidant capacity of rhizomes, above-ground vegetative parts and flowers of three Iris species: Iris humilis Georgi, Iris pumila L. and Iris variegata L. UHPLC-Orbitrap MS analysis was used for determination of phytochemical profile. Total pigments, phenolics, flavonoids, soluble sugars and starch content as well as ABTS antioxidant capacity were also determined. In total, 52 phenolics compounds were identified with 9 compounds (derivatives of iriflophenone, apigenin C-glycosides, luteolin O-glycoside, isoflavones derivatives of iristectorigenin, dichotomitin, nigracin and irilone) never reported before in Iris spp. Differences in phenolic composition profile, pigments, soluble sugar, starch, total phenolics and flavonoids content and total antioxidant capacity were found among Iris species and different part of plants. Significant correlation between total phenolic content and antioxidant capacity was determined. The obtained results are comparable with those obtained for medical plants. These findings could be useful for fingerprinting characterization of Iris species and estimation of possible use in pharmaceutical industries

    Assise: Performance and Availability via NVM Colocation in a Distributed File System

    Full text link
    The adoption of very low latency persistent memory modules (PMMs) upends the long-established model of disaggregated file system access. Instead, by colocating computation and PMM storage, we can provide applications much higher I/O performance, sub-second application failover, and strong consistency. To demonstrate this, we built the Assise distributed file system, based on a persistent, replicated coherence protocol for managing a set of server-colocated PMMs as a fast, crash-recoverable cache between applications and slower disaggregated storage, such as SSDs. Unlike disaggregated file systems, Assise maximizes locality for all file IO by carrying out IO on colocated PMM whenever possible and minimizes coherence overhead by maintaining consistency at IO operation granularity, rather than at fixed block sizes. We compare Assise to Ceph/Bluestore, NFS, and Octopus on a cluster with Intel Optane DC PMMs and SSDs for common cloud applications and benchmarks, such as LevelDB, Postfix, and FileBench. We find that Assise improves write latency up to 22x, throughput up to 56x, fail-over time up to 103x, and scales up to 6x better than its counterparts, while providing stronger consistency semantics. Assise promises to beat the MinuteSort world record by 1.5x

    Carotenoids: New Applications of ā€œOldā€ Pigments

    Get PDF
    Carotenoids represent a large group of mainly red, orange, and yellow natural metabolites mainly involved in regulation of many metabolic processes. Carotenoids are beneficial for human health. Current study describes the importance, chemical composition and functioning of carotenoids. It is well known that carotenoids support pigments acting in light absorbance mechanisms during photosynthesis, and are known to protect the chlorophyll molecules from oxidative stress and reactive oxygen species (ROS) damage. Carotenoids are involved in signaling processes in plants, responses to environmental stresses, pollination, germination and reproduction, and development regulation. As nutrients of strong antioxidant activity that is primarily linked to their polyene molecular structure, the carotenoids are reported as immune-enhancement and anticancer agents, which are also involved in prevention of eye-, gastric and neurocognitive disorders, and in regulation of obesity and anti-ageing. Concern-ing the wide prospective applications of carotenoids as pharmaceuticals and nutraceuticals, there are some critical aspects associated with carotenoidsā€™ bioavailability and challenges in their bioengineering. This mostly refers to the needs for identification and cloning of genes responsible for carotenoid biosynthesis and transformation and related development of transgenic carotenoid-rich crops. In the recent years, technologies of micro-and nanoencapsulation have addressed the needs of carotenoid entrapping to enhance their bioavailability, solubility and chemical stability, and to ensure the target delivery and manifestation of their strong antioxidant and other biological activity. Among standard and some advanced analytic tools for carotenoid determination (e.g., High performance liquid chromatography-HPLC, Liquid chromatographyā€“mass spectrometry-LC-MS, Ultra high performance liquid chromatography-UHPLC, High-performance thin-layer chromatography-HPTLC and others), the vibrational spectroscopy techniques, primarily Raman spectroscopy coupled with chemometric modeling, opened a new era in carotenoid research and application

    Application of oxidation processes in the purification of wastewaters from phenolic compounds

    Get PDF
    Natural phenolic compounds are significant component of the human diet, as they are present in fruits and vegetables, and they have very important biological activity in the living organisms. Because of their structure, they are subject of numerous oxidation processes, such as autoxidation, but are easily to oxidize in presence of various oxidizing agents and enzymes. Many authors have been investigating phenolic oxidation processes, and have successfully identified their pathways and a significant number of intermediates and products generated by these processes. Also, particular attention has been made to the effects of these processes on food quality and other biological processes in living organisms. Phenols are persistent pollutants of water systems from various agricultural activities and industrial wastewater discharges. It is known that the presence of phenolic compounds in water supplies and industrial effluents directly affects natural processes in the environment due to their toxicity and natural ability to decompose. This property, to easily oxidize and, as a result of it, to mineralize, is practically useful for the treatment of the wastewaters, so it is of global concern to manage the best technology to remove phenols and other organic pollutants, assisted with the oxidation processes. In the aspect of treatment of wastewaters polluted with phenols, we reviewed oxidative processes such as autoxidation, enzyme-catalyzed oxidation, photo-oxidation, electrochemical oxidation and oxidation by Fenton's reagent and, based on the literature data, we presented advantages and disadvantages of these processes compared to each other. Ā© 2020 Editura Academiei Romane. All rights reserved
    • ā€¦
    corecore