24 research outputs found

    Effects of medicines used to treat gastrointestinal diseases on the pharmacokinetics of coadministered drugs:A PEARRL Review

    Get PDF
    Background: Drugs used to treat gastrointestinal diseases (GI drugs) are widely used either as prescription or over23 the-counter (OTC) medications and belong to both the ten most prescribed and ten most sold OTC medications worldwide. Current clinical practice shows that in many cases, these drugs are administered concomitantly with other drug products. Due to their metabolic properties and mechanisms of action, the drugs used to treat gastrointestinal diseases can change the pharmacokinetics of some co27 administered drugs. In certain cases, these interactions can lead to failure of treatment or to the occurrence of serious adverse events. The mechanism of interaction depends highly on drug properties and differs among therapeutic categories. Understanding these interactions is essential to providing recommendations for optimal drug therapy. Objective: To discuss the most frequent interactions between GI and other drugs, including identification of the mechanisms behind these interactions, where possible. Conclusion: Interactions with GI drugs are numerous and can be highly significant clinically. Whilst alterations in bioavailability due to changes in solubility, dissolution rate and metabolic interactions can be (for the most part) easily identified, interactions that are mediated through other mechanisms, such as permeability or microbiota, are less well understood. Future work should focus on characterizing these aspects

    The pig as a pre-clinical model for predicting oral bioavailability and in vivo performance of pharmaceutical oral dosage forms - a PEARRL review

    Get PDF
    Objectives: In pharmaceutical drug development, preclinical tests in animal models are essential to demonstrate whether the new drug is orally bioavailable and to gain a first insight into in vivo pharmacokinetic parameters that can subsequently be used to predict human values. Despite significant advances in the development of bio‐predictive in vitro models and increasing ethical expectations for reducing the number of animals used for research purposes, there is still a need for appropriately selected pre‐clinical in vivo testing to provide guidance on the decision to progress to testing in humans. The selection of the appropriate animal models is essential both to maximise the learning that can be obtained from such experiments and to avoid unnecessary testing in a range of species. Key findings: The present review, provides an insight into the suitability of the pig model for predicting oral bioavailability in humans, by comparing the conditions in the GIT. It also contains a comparison between the bioavailability of compounds dosed to both humans and pigs, to provide an insight into the relative correlation and examples on why a lack of correlation may be observed. Summary: While there is a general trend towards predicting human bioavailability from pig data, there is considerable variability in the data set, most likely reflecting species specific differences in individual drug metabolism. Nonetheless, the correlation between pigs vs. humans was comparable to that reported for dogs vs. humans. The presented data demonstrate the suitability of the pig as a preclinical model to predict bioavailability in human

    Effects of medicines used to treat gastrointestinal diseases on the pharmacokinetics of coadministered drugs:A PEARRL Review

    Get PDF
    Objectives: Drugs used to treat gastrointestinal diseases (GI drugs) are widely used either as prescription or over-the-counter (OTC) medications and belong to both the 10 most prescribed and 10 most sold OTC medications worldwide. The objective of this review article is to discuss the most frequent interactions between GI and other drugs, including identification of the mechanisms behind these interactions, where possible. Key findings: Current clinical practice shows that in many cases, these drugs are administered concomitantly with other drug products. Due to their metabolic properties and mechanisms of action, the drugs used to treat gastrointestinal diseases can change the pharmacokinetics of some coadministered drugs. In certain cases, these interactions can lead to failure of treatment or to the occurrence of serious adverse events. The mechanism of interaction depends highly on drug properties and differs among therapeutic categories. Understanding these interactions is essential to providing recommendations for optimal drug therapy. Summary: Interactions with GI drugs are numerous and can be highly significant clinically in some cases. While alterations in bioavailability due to changes in solubility, dissolution rate, GI transit and metabolic interactions can be (for the most part) easily identified, interactions that are mediated through other mechanisms, such as permeability or microbiota, are less well-understood. Future work should focus on characterising these aspects.</p

    Model-based analysis of biopharmaceutic experiments to improve mechanistic oral absorption modeling : an integrated in vitro in vivo extrapolation perspective using Ketoconazole as a model drug

    No full text
    Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro–in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pKa; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC0–t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development

    Combining biorelevant "in vitro" and "in silico" tools to simulate and better understand the "in vivo" performance of a nano-sized formulation of aprepitant in the fasted and fed states

    No full text
    Introduction: When developing bio-enabling formulations, innovative tools are required to understand and predict in vivo performance and may facilitate approval by regulatory authorities. EMEND® is an example of such a formulation, in which the active pharmaceutical ingredient, aprepitant, is nano-sized. The aims of this study were 1) to characterize the 80 mg and 125 mg EMEND® capsules in vitro using biorelevant tools, 2) to develop and parameterize a physiologically based pharmacokinetic (PBPK) model to simulate and better understand the in vivo performance of EMEND® capsules and 3) to assess which parameters primarily influence the in vivo performance of this formulation across the therapeutic dose range. Methods: Solubility, dissolution and transfer experiments were performed in various biorelevant media simulating the fasted and fed state environment in the gastrointestinal tract. An in silico PBPK model for healthy volunteers was developed in the Simcyp Simulator, informed by the in vitro results and data available from the literature. Results: In vitro experiments indicated a large effect of native surfactants on the solubility of aprepitant. Coupling the in vitro results with the PBPK model led to an appropriate simulation of aprepitant plasma concentrations after administration of 80 mg and 125 mg EMEND® capsules in both the fasted and fed states. Parameter Sensitivity Analysis (PSA) was conducted to investigate the effect of several parameters on the in vivo performance of EMEND®. While nano-sizing aprepitant improves its in vivo performance, intestinal solubility remains a barrier to its bioavailability and thus aprepitant should be classified as DCS IIb. Conclusions: The present study underlines the importance of combining in vitro and in silico biopharmaceutical tools to understand and predict the absorption of this poorly soluble compound from an enabling formulation. The approach can be applied to other poorly soluble compounds to support rational formulation design and to facilitate regulatory assessment of the bio-performance of enabling formulations

    Combining biorelevant in vitro and in silico tools to investigate the in vivo performance of the amorphous solid dispersion formulation of etravirine in the fed state

    No full text
    Introduction: In the development of bio-enabling formulations, innovative in vivo predictive tools to understand and predict the in vivo performance of such formulations are needed. Etravirine, a non-nucleoside reverse transcriptase inhibitor, is currently marketed as an amorphous solid dispersion (Intelence® tablets). The aims of this study were 1) to investigate and discuss the advantages of using biorelevant in vitro setups in simulating the in vivo performance of Intelence® 100 mg and 200 mg tablets, in the fed state, 2) to build a Physiologically Based Pharmacokinetic (PBPK) model by combining experimental data and literature information with the commercially available in silico software Simcyp® Simulator V17.1 (Certara UK Ltd.), and 3) to discuss the challenges when predicting the in vivo performance of an amorphous solid dispersion and identify the parameters which influence the pharmacokinetics of etravirine most. Methods: Solubility, dissolution and transfer experiments were performed in various biorelevant media simulating the fasted and fed state environment in the gastrointestinal tract. An in silico PBPK model for healthy volunteers was developed in the Simcyp® Simulator, using in vitro results and data available from the literature as input. The impact of pre- and post-absorptive parameters on the pharmacokinetics of etravirine was investigated using simulations of various scenarios. Results: In vitro experiments indicated a large effect of naturally occurring solubilizing agents on the solubility of etravirine. Interestingly, supersaturated concentrations of etravirine were observed over the entire duration of dissolution experiments on Intelence® tablets. Coupling the in vitro results with the PBPK model provided the opportunity to investigate two possible absorption scenarios, i.e. with or without implementation of precipitation. The results from the simulations suggested that a scenario in which etravirine does not precipitate is more representative of the in vivo data. On the post-absorptive side, it appears that the concentration dependency of the unbound fraction of etravirine in plasma has a significant effect on etravirine pharmacokinetics. Conclusions: The present study underlines the importance of combining in vitro and in silico biopharmaceutical tools to advance our knowledge in the field of bio-enabling formulations. Future studies on other bio-enabling formulations can be used to further explore this approach to support rational formulation design as well as robust prediction of clinical outcomes

    Trypanothione Reductase High-Throughput Screening Campaign Identifies Novel Classes of Inhibitors with Antiparasitic Activity

    No full text
    High-throughput screening of 100,000 lead-like compounds led to the identification of nine novel chemical classes of trypanothione reductase (TR) inhibitors worthy of further investigation. Hits from five of these chemical classes have been developed further through different combinations of preliminary structure-activity relationship rate probing and assessment of antiparasitic activity, cytotoxicity, and chemical and in vitro metabolic properties. This has led to the identification of novel TR inhibitor chemotypes that are drug-like and display antiparasitic activity. For one class, a series of analogues have displayed a correlation between TR inhibition and antiparasitic activity. This paper explores the process of identifying, investigating, and evaluating a series of hits from a high-throughput screening campaign

    Synthesis and biological evaluation of polysulfated oligosaccharide glycosides as inhibitors of angiogenesis and tumor growth

    Get PDF
    A series of polysulfated penta- and tetrasaccharide glycosides containing alpha(1 -> 3)/alpha(1 -> 2)-linked mannose residues were synthesized as heparan sulfate (HS) mimetics and evaluated for their ability to inhibit angiogenesis. The compounds bound lightly to angiogenic growth factors (FGF-1, FGF-2, and VEGF) and strongly inhibited heparanase activity. In addition, the compounds exhibited potent activity in cell-based and ex vivo assays indicative of angiogenesis, with tetrasaccharides exhibiting activity comparable to that of pentasaccharides. Selected compounds also showed good antitumor activity in vivo in a mouse melanoma (solid tumor) model resistant to the phase III HS mimetic 1 (muparfostat, formerly known as PI-88). The lipophilic modifications also resulted in reduced anticoagulant activity, a common side effect of HS mimetics, and conferred a reasonable pharmacokinetic profile in the rat, as exemplified by the sulfated octyl tetrasaccharide 5. The data support the further investigation of this class of compounds as potential antiangiogenic, anticancer therapeutics
    corecore