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Graphical Abstract 

 

Abstract 

Three Physiologically Based Pharmacokinetic software packages (GI-Sim, Simcyp® 

Simulator, and GastroPlus™) were evaluated as part of the Innovative Medicine Initiative 

Oral Biopharmaceutics Tools project (OrBiTo) during a blinded “bottom-up” anticipation of 
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human pharmacokinetics. After data analysis of the predicted vs. measured pharmacokinetics 

parameters, it was found that oral bioavailability (Foral) was underpredicted for compounds 

with low permeability, suggesting improper estimates of intestinal surface area, colonic 

absorption and/or lack of intestinal transporter information. Foral was also underpredicted for 

acidic compounds, suggesting overestimation of impact of ionisation on permeation, lack of 

information on intestinal transporters, or underestimation of solubilisation of weak acids due 

to less than optimal intestinal model pH settings or underestimation of bile micelle 

contribution. Foral was overpredicted for weak bases, suggesting inadequate models for 

precipitation or lack of in vitro precipitation information to build informed models. Relative 

bioavailability was underpredicted for both high logP compounds as well as poorly water-

soluble compounds, suggesting inadequate models for solubility/dissolution, 

underperforming bile enhancement models and/or lack of biorelevant solubility 

measurements.  These results indicate areas for improvement in model software, modelling 

approaches, and generation of applicable input data. 

However, caution is required when interpreting the impact of drug-specific properties in this 

exercise, as the availability of input parameters was heterogeneous and highly variable, and 

the modellers generally used the data “as is” in this blinded bottom-up prediction approach.  

Keywords: 

Physiologically-based pharmacokinetics (PBPK); modelling and simulation (M&S); 

absorption; oral bioavailability (Foral); biopharmaceutics; drug database 

 

Abbreviations: 

AFE = Average Fold Error 
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AAFE = Absolute Average Fold Error 

API = Active pharmaceutical ingredient, 

AUC = Area under the curve, 

BCS = Biopharmaceutics classification system, 

BE = Bioequivalence 

BP = Blood-to-plasma ratio, 

CCC  = Concordance Correlation Coefficient 

CL = Clearance, 

CL/F = Apparent clearance 

Cmax = Maximum concentration, 

Do = Dose number, 

fa = Fraction absorbed, 

FE = Fold Error 

FIM = First In Man 

Foral = Absolute oral bioavailability, 

Frel = Relative bioavailability, 

fup = fraction unbound in plasma, 

GI = Gastro-Intestinal 

IMI = Innovative Medicines Initiative, 
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i.v. = Intravenous, 

IR = Immediate release, 

LogP = Logarithm of the octanol/water partition coefficient, 

LogDpH = Logarithm of the octanol/water partition coefficient at a given pH, 

MAT = Mean Absorption Time 

MTD = Maximal Tolerated Dose 

MTT = Mean Transit Time) 

MRT = Mean Residence Time 

MW = Molecular weight, 

<n-fold = % APIs within n-fold, 

PAC = Post Approval Changes  

PBPK = Physiologically-based pharmacokinetic, 

PK = Pharmacokinetic, 

p.o. = per oral, 

QbD = Quality by Design 

R = Pearson correlation coefficient  

SME = Small or Medium Enterprise 

tmax = Time at maximum concentration, 

Vd = Volume of distribution, 
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Vd/F = Apparent volume of distribution, 

 

1. Introduction 

The oral route is the most favourable route for drug administration due to its ease of 

administration and minimal invasiveness. However, orally administered drug products are 

exposed to a number of potential barriers between administration and systemic exposure, 

such as dissolution of solid particles and potential precipitation in the gut lumen, permeation 

through the gut membrane, and intestinal and hepatic first pass metabolism. These processes 

can have a big impact on the ability to predict in vivo performance of drug products. The 

ability to anticipate the impact of these processes is of great importance in drug and 

formulation development. 

The Innovative Medicines Initiative (IMI) Oral Biopharmaceutical Tools (OrBiTo) project 

aims to improve upon knowledge of oral drug absorption through the development of new 

methodologies and refinement of existing tools available in oral biopharmaceutical 

development. Through four workpackages (WP1-4), the OrBiTo project aims to improve on 

the tools for evaluating physico-chemical characterisations of active pharmaceutical 

ingredients (APIs), the development and characterisation of drug product formulations, better 

understanding of the human intestinal environment, and the in silico models for integrating 

these different aspects into quantitative and qualitative predictions of oral drug exposure 

(Lennernas et al., 2014). In our previous work we demonstrated the setup of the OrBiTo 

database of APIs and an overview of the results of the simulation exercise to evaluate the 

predictive performance of three established PBPK software packages (Margolskee et al. – 

Part  1 – Submitted; Margolskee et al. – Part 2 – Submitted). 
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Here we present an analysis of the prediction success with a focus on the impact of 

compound specific properties and other factors that may influence the outcome of predictions 

of oral drug exposure. For example, acid/base nature, as well as lipophilicity, are thought to 

play important roles in dissolution, absorption, and disposition, and are often used as input 

parameters of the PBPK model to dynamically calculate solubility in the different segments 

of the GI tract and account for the influence of prandial state on the drug solubility, 

dissolution rate and permeation rate due to the concentration of bile salts assuming different 

diffusion for free and micelle-bound drug (Miller et al., 2011). Weak bases may be subject to 

precipitation in the high pH of the intestinal environment after dissolving in the low pH of 

stomach acid. The highly ionised state of acids in the intestinal lumen may increase 

solubility, but also hinder permeation through the phospholipid membranes of the intestinal 

wall. Acids and bases have the potential to distribute differently into tissues in the body, 

depending upon the tissue composition and their affinity for different phospholipids; in silico 

predictions of volume of distribution account for tissue composition and these differences 

between acids and bases  (Rodgers and Rowland 2006). Lipophilicity may also affect 

dissolution in aqueous media, and highly lipophilic compounds can be subject to enhanced 

solubilisation by bile salts (Mithani et al., 1996), an area which has the potential for error 

within the PBPK framework, especially if  solubility in biorelevant media are not measured 

experimentally. 

The Biopharmaceutics Classification System (BCS), as a classic categorisation of compounds 

into high and low solubility and high and low permeability, has been used extensively to 

qualitatively predict in vivo oral drug behaviour. In contrast, PBPK has the potential to 

quantitatively describe the qualitative dynamics indicated by the BCS classification and this 

can be tested by comparing the predictive abilities of PBPK for the different classes of 

compounds. For example, for PBPK to be at least as successful as the BCS benchmark, it 
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should be able to distinguish differences in bioavailability between high and low permeable 

compounds, and differences in relative bioavailability between high and low soluble 

compounds.  

2. Methods 

Inclusion criteria were employed in order to select APIs from the OrBiTo API database for 

the simulation exercise. The criteria were primarily based on the minimum set of parameters 

necessary to simulate a compound using the PBPK absorption model in the different software 

packages and included the availability of: molecular weight, LogP/D, fraction unbound in 

human plasma (fup), any clearance source scalable to human, in vitro permeability with 

reference compounds, at least one measure of solubility and available clinical data following 

per oral administration of the given drug. Of the 83 APIs in the OrBiTo database at the start 

of the exercise, 43 satisfied the inclusion criteria. For more details on the API selection 

process and comparison of the simulation set with the entire database, see companion paper 

(Margolskee et al. – Part 1 – Submitted). 

A large scale evaluation of the predictive performance of existing in silico methods was 

undertaken. Three software packages, GastroPlus
™

 (Simulations Plus Inc., Lancaster, CA), 

Simcyp
®
 (Certara, Sheffield, UK) and GI-Sim (AstraZeneca, London, UK), were employed 

to produce bottom-up predictions for all of the 43 APIs in the simulation set. Each 

participating institution generated predictions for all available clinical study arms for the 

APIs that they had been allocated. A certain degree of overlap in API allocation was allowed 

to test for user differences. Limited standard operating procedures were provided for Simcyp 

and GI-Sim, however, most decisions on parameter data selection and simulation setup were 

left to the individual modellers at each institution. For more details on the procedure for 

performing the simulations see companion paper ( Margolskee et al. – Part 2 – Submitted).  
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Predictive performance of the PBPK software packages was evaluated through comparison of 

typical pharmacokinetic (PK) parameters between simulated and observed values. These PK 

parameters were calculated as described in Part 2 (Margolskee et al. – Part 2 – Submitted). 

The presented PK parameters included: AUC0-t,last (area under the curve from time zero to last 

measured time point), AUC0-Inf (AUC from time zero extrapolated to time infinity), Cmax 

(maximum concentration in plasma), tmax (time of peak concentration), t1/2 (terminal half-

life), CL (clearance), CL/F (oral apparent CL), Vd (volume of distribution), Vd/F (oral 

apparent Vd), MTT (mean transit time), MRT (mean residence time), Foral (bioavailability), 

MAT (mean absorption time), Frel (relative bioavailability), relative Cmax, and relative AUC.  

Summary statistics for describing the overall performance of the simulations were decided 

upon through consensus between the involved institutions and calculated as specified in our 

companion paper ( Margolskee et al. – Part 2 – Submitted). Statistical metrics included: % 

within two, three and ten-fold of observed, Average Fold Error (AFE), Absolute AFE 

(AAFE), Pearson regression coefficient (R) and Concordance Correlation Coefficient (CCC) 

(Lin, 1989; Poulin et al., 2011). The analysis presented in this manuscript focused on single 

dose and fasted state study arms only (excluding: multiple dose and fed state simulations). 

2.1. Grouping based on drug-specific properties 

APIs were separated based on drug-specific properties of interest to evaluate the potential 

impact on the performance of the models. Properties investigated include molecular weight 

(MW), acid/base nature, lipophilicity (logP and/or logD), BP, fup, BCS class, dose number 

(Do) and estimated fa from scaled human effective permeability (Peff).  

Groupings for acid/base nature included acid, ampholyte, neutral, weak base, and strong base 

categories, where strong bases had at least one pKa greater than 7. For each of the properties 

MW, logP, logD, BP and fup, the APIs were separated into four quartiles. Quartiles for each 
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of these properties are displayed in Table 1. The logD values used in the groupings were the 

reported logD values taken at the pH closest to 7.4 for each API. In the case for thirty five of 

the APIs this was pH 7.4, while for the remaining eight APIs the closest pH ranged from 6.5 

to 8 (Margolskee et al. – Part 1 – Submitted). 

 

Grouping based on Do and fa followed the BCS cut-offs of Do≤ 1 and Do>1, and fa<0.9 and fa≥ 

0.9. Grouping based on BCS class was carried out according to the reported BCS class of the 

compounds in the database, or if this was not available, an estimated BCS classification was 

assigned from fa based on scaled human Peff, and dose number based on maximum reported 

dose and aqueous solubility. For further details of these calculations, see companion paper 

(Margolskee et al. – Part 1 – Submitted). 

Table 1: Quartiles for each of the properties of MW, logP, logD, BP, and fup for the 

simulated APIs 

 Q1 Q2 Q3 Q4 

MW (150,365 g/mol] (365,440 g/mol] (440,505 g/mol] (505,870 g/mol] 

logP (-0.72 , 2.545] (2.545 , 3.3] (3.3 , 4.49] (4.49 , 7.75] 

logD (-1.45,1.29] (1.29,2.55] (2.55,3.17] (3.17,5.8] 

BP (0.517,0.595] (0.595,0.640] (0.640,0.925] (0.925,3.300] 

fup (0.0002,0.0125] (0.0125,0.05] (0.05,0.0855] (0.0855,0.74] 

 

Geometric mean FEs were calculated for each API, averaging over API specific study arms 

(to account for APIs with different numbers of simulated study arms). APIs were categorised 

according to properties of interest, and summary statistics of the PK parameters were 

calculated for each group.  

In order to test for interdependencies in the API parameters that may impact the interpretation 

of the results, Pearson correlation coefficients were calculated for each pairwise combination 
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of relevant quantitative parameters. The parameters analysed were MW, logP, logD, highest 

basic pKa, lowest acidic pKa, logit(fup), log(BP-0.5), logit(fa), and log(Do), where logit(x) = 

log(x/(1-x)). The transformations for fup, BP, fa and Do were chosen so the transformed 

variables would be approximately normally distributed, allowing for more meaningful 

correlation estimates. Correlations greater than 0.7 in magnitude were considered strong, 

while correlations between 0.5 and 0.7 were considered moderate. 

 

3. Results and Discussion 

 

Inspection of correlations between API properties revealed a strong negative correlation 

between logP and logit(fup) and a strong positive correlation between lowest acidic pKa and 

log(BP – 0.5) (Figure 1). Moderate positive correlations included logP vs logD, logD vs 

lowest acidic pKa, highest basic pKa vs log(BP – 0.5), and logit(fup) vs log(BP – 0.5). 

Moderate negative correlations included highest basic pKa vs log(Do) and logP vs log(BP – 

0.5). Several of these correlations are not surprising, such as logP and logD which both relate 

to lipophilicity, and fup and BP which relate to plasma and blood binding properties. The high 

correlation between logP and plasma protein binding has also been well documented 

(Yamazaki and Kanaoka, 2004). These correlations should be taken into consideration when 

interpreting the results of this exercise. 
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Figure 1: Pairwise comparison of API properties of interest detailing the Pearson correlation 

coefficients (above diagonal), pairwise scatterplots of property values (below diagonal), and 

individual histograms of property values (diagonal); MW = molecular weight, pKabase = 

highest basic pKa, pkaacid = lowest acidic pKa, fup = fraction unbound in plasma, BP = blood-

to-plasma ratio, fa,pred = fraction absorbed predicted from in vitro Caco-2 experiments, Do = 

dose number, logit(x) = log(x/(1-x)). 

 

Sections 3.1- 3.3 detail the influence of compound properties of interest on the predictive 

performance of different PK parameters including AUC0-t,last, Foral, Frel, Cmax, CL or CL/F and 

Vd or Vd/F. A summary of the findings is included in Table 2. Section 3.4 includes discussion 

around the interpretation of the results, and next steps. Analysis applied to the predictive 

performance of additional PK parameters can be found in the Supplementary Material.  
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Table 2. Summary of impact of drug-specific properties on predictive performance 

Physicochemical properties 

Acid-base 

nature 

Weak bases: Were poorly predicted where Foral was slightly overpredicted and 

Frel was underpredicted. 

Acids: Displayed negative bias for predicting Foral. 

 

LogP Low LogP: APIs with low LogP gave better predictions of Foral compared to 

compounds with higher LogP. 

Midrange LogP: Gave better predictions of Frel compared to high and low 

LogP. 

Calculated LogP: Gave poor predictions compared to measured LogP. 

 

LogD Low LogD: Displayed better predictive performance of Frel compared to high 

LogD. 

 

Plasma and blood binding 

Fup Low fup: Tended to underpredict of CL and CL/F. 

 

BP High BP: Tended to give better predictive performance of CL and CL/F. 

BCS Classification 

BCS Class BCS III and IV: Foral predictions displayed negative bias as compared with 

BCS I and II (highly permeable compounds). 

 

BCS II and IV: Frel predictions displayed negative bias as compared with 

overprediction for BCS I and III (freely soluble compounds). 

 

fa fa ≥ 0.9: Displayed a lower bias, higher precision and better correlation metrics 

for predictions of Foral as compared to the fa < 0.9 group. 

 

Do Do > 1: Displayed an overall negative bias for predictions of Frel and the Do ≤ 1 

group displayed an overall positive bias. 

 

Foral = Oral bioavailability, Frel = Relative bioavailability between oral formulations, fup = 

fraction unbound in plasma, BP = Blood-to-plasma ratio, BCS = Biopharmaceutics 

Classification System, fa = fraction absorbed as predicted from in vitro experiments, Do = 

dose number. 
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3.1. Physicochemical properties 

The correlations between physico-chemical properties and the success in predictions were 

investigated for different parameters including acid/base nature and lipophilicity, while MW 

was also investigated, no trends were apparent.  

 

3.1.1. Acid-base Nature 

Predictions of oral AUC0-t,last for neutral compounds and strong bases generally performed 

well, displaying 80.0% and 92.3% of predictions within three-fold of observed data. Further, 

low variability was observed for FEs for neutral APIs and strong bases, with calculated 

AAFEs of 1.92 and 1.63, respectively. Reasonable correlations between predicted and 

observed were noted, where neutrals and strong bases displayed R coefficients of 0.89 and 

0.93, and CCC of 0.34 and 0.93 (Figure 2A-C).  

 

Poor predictions of AUC0-t,last were observed for acids with 10.0% and 20.0% within two and 

three-fold for p.o. simulations and a high variability with AAFE of 6.33 (Figure 2A-C). This 

poor predictive performance may be due to issues in predicting disposition, as both Foral and 

Frel between p.o. formulations and solutions were generally well predicted (80% and 100% 

within two-fold) (Figure 2D,G). The AUC0-t,last predictions of p.o. simulations for acidic 

compounds displayed a low bias with AFE of 1.16 (Figure 2B), indicating the presence of 

both over- and underpredictions, while i.v. formulations displayed an overall overestimation 

as compared to observed data. This overprediction in i.v. exposure seems to be a combined 

underprediction of both CL (AFE of 0.346) and Vd (AFE of 0.564) for acids (Table A5 and 

Table A6).  
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A slight negative bias of Foral was observed for predictions of acids with an AFE of 0.580 

(1.72-fold underprediction) and poor correlation (R of -0.570 and CCC of -0.480). This could 

be related to a potential underestimation of permeability of acidic compounds, an 

overestimation of the impact of ionisation on permeation, or a lack of information on 

intestinal transporters. It could also be related to an underestimation of solubility of weak 

acids due to less than optimal intestinal model pH settings or an underestimation of 

contribution of bile micelles. However, it could also be due to a small number of poor 

predictions as the percent within two-fold was considered high at 80.0%.  

 

Poor predictions of Foral were seen for weak bases (25.0% within two-fold), showing a 

tendency towards overprediction (AFE 1.48), somewhat high source of variability (AAFE 

2.46) and poor correlation between predicted and observed, with an R of -0.56 and CCC of -

0.296 (Figure 2D-F). A slight overprediction of Foral was observed, whereas Frel between p.o. 

formulations and solution was underpredicted (Figure 2H). This trend in predictions for weak 

bases may be due to insufficient data to inform precipitation of the formulation, as few APIs 

had information regarding precipitation in vitro (Margolskee et al. – Part 1 - Submitted).  

 

Cmax was best predicted for neutral compounds, strong and weak bases with 60.0%, 53.8% 

and 45.5% predicted with two-fold of observed data, respectively. Neutral compounds and 

weak bases further displayed the strongest correlation metrics (R and CCC of 0.783 and 

0.644, for weak bases; R and CCC of 0.922 and 0.749 for neutral APIs; Table A2). 
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Figure 2. Prediction metrics for AUC0-t,last for p.o. formulations (A-C), Foral for p.o. vs. i.v. 

simulations (D-F), and Frel for p.o. vs. solution simulations (G-I), grouped by acid-base 

nature. 
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3.1.2. Lipophilicity 

3.1.2.1. LogP 

Investigating the impact of logP on predictions of AUC0-t,last revealed predictions for APIs in 

the second quartile range of logP (Q2: 2.545-3.3) to show a tendency towards better 

performance as compared to either extremes, with 55.6% within two-fold error, AFE of 1.14, 

AAFE of 2.17, and R of 0.862 and CCC of 0.836 (Figure 3). Both low logP (Q1: -0.72-2.54) 

and high logP (Q4: 4.49-7.75) APIs performed poorly compared to the Q2, displaying a lack 

of correlations, with an R of 0.0411 and 0.0489 for Q1 and Q4, respectively, and a CCC of 

0.0183 and 0.0481 (Figure 3). 

 

APIs in the upper quartile of logP generally gave underpredictions of Foral (AFE of 0.477 for 

Q4), while those in the third quartile gave overpredictions (AFE of 2.21). APIs with lower 

logP gave the least biased predictions (AFE of 0.819 and 0.920 for Q1 and Q2, respectively). 

Predictions of Foral for APIs with measured logP were fairly consistent in their correlation 

with observed, with an R of 0.671, 0.464, and 0.588 for Q1, Q3, and Q4. APIs without 

measured logP gave highly inconsistent predictions when comparing to observed data with an 

R of -1 (Figure 3D-F). 

 

Relative AUC between p.o. formulations and solution was predicted best for APIs in the third 

quartile of logP (Q3: 3.3-4.49), with 100% within two-fold (n=4), AFE of 1.06, low 

variability with AAFE of 1.19, and strong correlation with R of 0.99 and CCC of 0.87 (Figure 

3G-I). Relative AUC showed underpredictions on average for both APIs with low logP (Q1) 

and high logP (Q4) compared to APIs with middle range logP (Q2 and Q3), displaying AFE 
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of 0.57 and 0.54 (1.75 and 1.85-fold underpredictions) for Q1 and Q4, respectively, 

compared to 0.74 (1.35-fold underprediction) and 1.06, for Q2 and Q3 (Figure 3H). 

Underpredictions of Frel for compounds with logP values in Q4 suggest inadequate models 

for solubility and dissolution of highly lipophilic compounds, possibly underperforming bile 

enhancement models or lack of solubility data generated in biorelevant media for highly 

lipophilic compounds. Interestingly, Q4 showed high correlations between predicted and 

observed, with R of 0.985, but relatively low CCC of 0.510, suggesting the predictions were 

in the right direction but on the wrong scale (Figure 3I).  

 

The average predictive performance for Vd or Vd/F for i.v. and p.o. simulations was relatively 

unbiased for low logP compounds with AFE ranging from 0.917 to 1.14 for Q1 through Q3, 

while a general trend of overprediction was observed for highly lipophilic compounds (AFE 

of 2.43 for Q4) (Figure 4 and Table A6). This may be related to the in silico methods utilised 

for predicting distribution into tissues, which varied between users and software. It is well 

known that in silico methods for predicting Vss, such as the Poulin and Theil and Rodgers and 

Rowland model (Poulin and Theil, 2000; Rodgers et al., 2005; Rodgers and Rowland, 2006), 

overpredict the volume of distribution for highly lipophilic compounds. Alternative models 

have been developed to account for the overprediction in Vss for highly lipophilic compounds 

(Berezhkovskiy, 2004; Poulin and Haddad, 2012) , and these were employed to some extent 

in the modelling of APIs for the OrBiTo simulation exercise at the modellers discretion. 

Further analysis will explore user differences such as this in an effort to test the performance 

of alternative methods. 
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Figure 3: Prediction performance measures of AUC0-t,last for p.o. formulations (A-C), Foral for 

p.o. vs. i.v. simulations (D-F), and Frel for p.o. vs. solution simulations (G-I), grouped by 

quartiles of logP.  
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Figure 4. Prediction metrics of volume of distribution (Vd) for i.v. formulations or oral 

apparent Vd (Vd/F) for p.o. formulations, grouped by logP quartiles.  

 

3.1.2.2. LogD 

Prediction performance of AUC0-t,last for p.o. simulations for APIs in the first quartile of logD 

(Q1: -1.45-1.29, n=7) was poor, with 14.3%, 28.6% and 57.1% within two, three and ten-fold 

error, vs. 33.4%, 52.3%, and 90.7%, for the APIs in Q2-Q4 combined (Figure 5). AUC0-t,last 

was overpredicted on average for APIs in Q1, with AFE of 2.19 vs. 1.15 for Q2-Q4 

combined. Further, Q1 showed high variability with AAFE of 7.60 vs. 3.29 for Q2-Q4, and 

low correlation between predicted and observed with R of -0.239 and CCC of -0.083 (Figure 

5). 

 

Predictions for AUC0-t,last Foral were poor for APIs in Q1 of logD, displaying AFE of 0.418 (or 

2.38-fold underprediction; n=3; vs. AFE of 1.14 for Q2-Q4; n=9), high variability with 

AAFE of 4.17 (vs. 1.87 for Q2-Q4), and poor correlation between predicted and observed 

with R of -0.855 and CCC of -0.706. However, more APIs in Q1 had predictions of Foral 

within two-fold compared with Q2-Q4 (66.7% vs. 55.6%), and less within three and ten-fold, 
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66.7% and 66.7%, vs. 88.9% and 100%, for Q2-Q4, indicating the results may be skewed by 

a single outlier (Figure 5D-F). 

 

Predictions for Frel between p.o. and solutions seemed to perform better for lower quartiles of 

logD, with 100% within two-fold for Q1, 75.0% for each of Q2 and Q3, and 50.0% for Q4. 

On average, the bias for the different quartiles appeared comparable, with AFE of 0.868, 

0.829, 1.09, and 0.606 for Q1, Q2, Q3, and Q4, respectively. The variability in the 

predictions appeared to increase with increasing logD, with AAFE of 1.35, 1.70, 1.66, and 

1.88 for Q1, Q2, Q3 and Q4. Additionally, correlation between predicted and observed Frel 

declined with increasing logD (R of 0.466, 0.136, 0.0683 and -0.392 and CCC of 0.136, 

0.125, 0.0662, and -0.179 for Q1, Q2, Q3, and Q4; Figure 5G-I).  
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Figure 5: Prediction performance of AUC0-t,last for p.o. formulations (A-C), Foral for p.o. vs. 

i.v. simulations (D-F), and Frel for p.o. vs. solution simulations (G-I), grouped by logD 

quartiles.  

  

Predictions of p.o. AUC0-t,last performed poorly for APIs for which logP was not given (n=8) 

compared to those for which logP was reported (n=35). While the overall average 

performance of the APIs without logP was very good at predicting AUC0-t,last (AFE of 1.11), 
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the variability was high, with an AAFE of 4.91 (vs. 2.90 for APIs providing logP) and 12.5% 

fell within 2 fold (vs. 42.9%), and additionally, there was poor correlation between predicted 

and observed AUC0-t,last with R of -0.0936 and CCC of -0.0913 (Figure 3). In contrast, the 

group of APIs for which logD was not reported performed very well in predicting AUC0-t,last, 

with 53.3% and 73.3% within two and three-fold error, vs. 28.7% and 46.4%, for APIs where 

logD was provided (Q1-Q4 combined). APIs not reporting logD also had relatively unbiased 

estimates and reasonable variability compared with APIs reporting logD. Correlation between 

predicted and observed was also very high with R of 0.846 and CCC of 0.834 (Figure 5).  

 

3.2. Plasma and blood binding values 

In this section, the connection between blood and plasma binding properties and prediction 

performance was investigated for different pharmacokinetic parameters. Summary statistics 

were investigated for APIs divided into BP quartiles, and divided into fup quartiles (Table 1).  

 

Q1 and Q2 for BP showed poor predictions of AUC0-t,last, with a low percentage falling within 

n-fold, high variability, and poor correlations between predicted and observed (Figure 6). 

Clearance predictions also showed high variability and poor correlation for lower values of 

BP (Figure 6D-F, and Table A5). A similar trend was seen for fup, where Q1 and Q2 

generally underperformed compared with Q3 and Q4 with low correlations between predicted 

and observed (Figure 7C). There was a moderate correlation between fup and BP for our 

dataset (Figure 1), and a great overlap between APIs of the lowest BP quartiles and the 

lowest fup group (fup < 0.01). Low BP indicates lack of uptake into red blood cells, which 

may reflect the high plasma protein binding in these cases. The underestimations of clearance 

observed for lower fup (highly protein bound) compounds could be explained by unknown 
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mechanisms for the transfer of highly lipophilic drugs into cells from proteins, as a modest 

positive relationship between logP and percent bound to protein in plasma (or negative 

relationship between logP and fup) has been documented in the literature (Yamazaki and 

Kanaoka, 2004), similarly a strong correlation was observed between logP and fup for our 

dataset (Figure 1).  

 

De Buck 2007 investigated the prediction of hepatic clearance using two different methods, 

method 1 using the traditional formula involving fup/BP and fuinc, and method 2 where the 

effects of fup/BP and fuinc were assumed to cancel each other out. The second method 

performed considerably better at predicting in vivo hepatic clearance from in vitro CLint, 

potentially through unintentionally compensating for the inherent underprediction in CLint 

when scaling from HLMs or human hepatocytes (Hallifax et al., 2012). The results of De 

Buck 2007 and the relationship we have observed here between low BP and high variability, 

and low fup and high variability in the prediction of clearance may be related.  

 

3.2.1. Blood to plasma ratio (BP) 

Simulated APIs were divided into four quartiles (Q1 to Q4; Table 1) based on average 

simulated blood-to-plasma ratios (BPs). The percent within n-fold increased with increasing 

BP quartile, where 0.00, 33.3, 50.0 and 63.6% fell within two-fold for Q1 through Q4, 

respectively, 27.3, 44.4, 66.7 and 81.8% within three-fold, and 72.7, 77.8, 100, and 100% 

within ten-fold. Similarly, the quartiles showed increasing precision with increasing BP with 

AAFE of 5.91, 4.46, 2.12, and 2.09 for Q1 through Q4. While Q1 showed a relatively low 

bias with AFE of 0.951, Q2 through Q4 continued the trend of better performance with 

increasing BP, with AFE of 2.13, 1.57, and 0.98. Q1 and Q2 also showed poor correlation 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

between predicted and observed with R of 0.0147 and -0.112 and CCC of 0.0136 and -0.101. 

In contrast, Q3 and Q4 displayed good correlation between predicted and observed data with 

R of 0.825 and 0.921 and CCC of 0.727 and 0.908 (Figure 6A-C). 

 

When examining the prediction of CL and CL/F for p.o. and i.v. simulations, there was a 

tendency of better performance for the higher quartiles of BP. Q1 displayed 0.00, 18.2 and 

81.8% of predictions within two, three and ten-fold with similar results for Q2. Q3 and Q4 

showed higher frequency within n-fold, with 50.0, 58.3 and 100% for Q3, and 63.6, 81.8, and 

100% for Q4 falling within two, three and ten-fold. Q2 displayed the largest bias (AFE: 

0.298, or a 3.36-fold underprediction) and poorest precision (AAFE: 7.00), whereas Q1 

displayed the lowest AFE at 1.02 and Q4 the lowest AAFE at 2.05. Correlations between 

predicted and observed CL or CL/F progressively improved with increasing BP quartiles (R: 

0.197, 0.189, 0.537, 0.793 for Q1 through Q4 and CCC: 0.0464, 0.123, 0.243, 0.790 for Q1 

through Q4; Figure 6D-F, and Table A5). 

 

Investigating the impact of BP on the performance of predicting Cmax revealed an overall 

trend of improvement towards compounds with higher BP, for instance CCC ranged from 

0.224 for Q1 to 0.636 for Q4. Similarly, improvements were seen in the bias (AFE Q1-Q4: 

0.247-0.75) and precision (AAFE Q1-Q4: 7.36-2.73) with increasing BP (Table A2).  
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Figure 6: Prediction metrics for AUC0-t,last for p.o. formulations (A-C) and CL or CL/F for i.v. 

and p.o. simulations (D-F) as compared to blood-to-plasma ratio value as divided into the 1
st
 

to 4
th

 quartile (Q1-4).  

 

3.2.2. Fraction unbound in plasma (fup)  

Examining the predictive performance of simulated p.o. AUC0-t,last in relation to simulated 

average fup neglected to show any apparent trends. However, there was an increase in 

performance in terms of R and CCC with increasing percentiles, with R values of -0.0658, 

0.00985, 0.527, and 0.866 for Q1 through Q4, and CCC of -0.0614, 0.00851, 0.400, and 

0.810 for Q1 through Q4, respectively (Figure 7). 
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Figure 7: Prediction metrics for AUC0-t,last for p.o. formulations (A-C) and CL or CL/F for i.v. 

and p.o. simulations (D-F) as compared to as compared to fup value as divided into the 1
st
 to 

4
th

 quartile (Q1-4).  

 

3.3. BCS Classification 

For BCS class I compounds, 37.5% of APIs displayed a predicted average oral AUC0-t,last 

within two-fold, with 87.5% of predictions falling within ten-fold, BCS class II compound 

displayed a similar level of percentage within two, three and ten-fold. BCS IV APIs displayed 

a lower degree of predictability with 33.33% falling within two-fold and 77.8% within ten-

fold; whereas analysis of BCS class III was limited to two APIs and could therefore be 

considered undetermined (Figure 5A). BCS class I, II and IV displayed a low AFE, 0.796, 

1.55, and 1.47, respectively, and AAFE increased with increasing BCS class, 2.81, 3.30 and 
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4.00 (Figure 5B). With respect to correlation parameters, BCS class I compounds 

outperformed the remaining classes, displaying an R value of 0.850 and a CCC value of 

0.837 (Figure 8). 

 

Foral predictions for BCS classes III and IV (low permeable compounds) displayed negative 

bias as compared with BCS I and II (high permeable compounds), displaying AFE of 0.357 

for BCS III and IV combined (n=5) and 1.54 for BCS I and II combined (n=12; Figure 8E). 

Similarly, Foral predictions for estimated fa < 0.9 displayed negative bias with AFE of 0.499 

(n=6) vs. 1.47 for APIs with estimated fa ≥ 0.9 (Figure 9E). This underprediction of Foral for 

low permeable compounds could potentially indicate an oversensitivity of the models to in 

vitro permeability measurements, improper intestinal surface area estimates, underestimates 

of colonic absorption and/or lack of intestinal transporter information. Simulations for highly 

permeable compounds (fa ≥ 0.9) in general performed better than those for low permeable 

compounds in terms of predictions of p.o. AUC0-t,last, Cmax and Foral. This is possibly not 

surprising, as for highly permeable compounds fa will saturate at a value close to1.0, thus 

providing limited information on prediction performance of the model. Looking at lower 

permeable compounds gives a better indication of the (lack of) precision and accuracy of 

scaling and modelling of permeability. 

 

Frel predictions for BCS classes II and IV (low soluble compounds) displayed negative bias, 

with AFE of 0.677 (a 1.48-fold underprediction) as compared with 1.20 overprediction for 

BCS I and III (high soluble compounds) (Figure 5H). Similarly, compounds with Do > 1 

(n=21) displayed AFE of 0.681 vs. 1.38 for compounds with Do ≤ 1 (Figure 10E). While the 

number of Frel predictions for compounds in the higher soluble category was small (4 based 
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on reported BCS and 3 based on calculated Do), the underpredictions of Frel for low soluble 

compounds suggest over sensitivity of the dissolution models to aqueous solubility. However, 

this could also be due to a lack of available measurements of solubility in biorelevant media, 

as 72.1% of the simulation set were missing this data (Margolskee et al. – Part 1 - Submitted). 

 

 

 

Figure 8: Statistical metrics of prediction success of oral AUC0-t,last for p.o. formulations (A-

C), Foral for p.o. vs. i.v. simulations (D-F), and Frel for p.o. vs. solution simulations (G-I), as 

compared to the biopharmaceutics classification system (BCS) classes I-IV.  
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3.3.1. Estimated fraction absorbed from in vitro permeability assay 

Permeability-limited APIs (fa < 0.9) displayed an improved prediction of p.o. AUC0-t,last as 

compared to highly permeable APIs (fa ≥ 0.9) with regards to within two-fold with calculated 

values of 46.7 and 32.1%, respectively; whereas highly permeable compounds displayed a 

higher frequency within ten-fold as compared to permeability limited APIs with 96.4 and 

73.3% (Figure 9A). Oral predictions of AUC for highly permeable APIs displayed slightly 

higher accuracy and precision compared to permeability-limited APIs with AFEs of 1.22 and 

1.47, AAFEs of 3.08 and 3.47 (Figure 9B). Further, highly permeable APIs displayed a better 

correlation between predicted and observed AUC compared with low permeable compounds 

(R: 0.199 and -0.0389 and CCC: 0.195 and -0.0110; Figure 9C). 

 

Predictions of Foral in relation to estimated fa gave comparable percent within two and three-

fold whereas APIs with higher estimated fa ≥ 0.9 displayed a larger percentage within ten-

fold as compared to the fa < 0.9 group (100% vs. 83.3%; Figure 9D). The fa ≥ 0.9 group 

displayed a lower bias and higher precision as compared to the fa < 0.9 group, with AFE of 

1.47 and 0.499, respectively and AAFE of 1.83 and 2.53 (Figure 9E). Correlation coefficients 

R and CCC suggested similar correlations between predicted and observed Foral for the two 

groups with a slight favour towards fa ≥ 0.9 (R: 0.517, CCC: 0.439) as compared to fa < 0.9 

(R: 0.451, CCC: 0.373; Figure 9F). 
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Figure 9: Statistical metrics of prediction success of oral AUC0-t,last (A-C) and Foral (D-F) as 

compared to the biopharmaceutics classification system (BCS) cut-off point for permeability 

(fa=0.9) divided into permeability-limited (fa < 0.9) and highly permeable (fa ≥ 0.9) active 

pharmaceutical ingredients (APIs).  

 

3.3.2. Dose number (Do) 

Examining the predictive success of oral AUC0-t,last in relation to dose number grouping 

revealed a comparable percentage within two, three and ten-fold. Freely soluble APIs 

displayed 37.5, 62.5 and 87.5% within two, three and ten-fold and solubility-limited 

compounds displayed 37.1, 54.3 and 88.6% within two, three and ten-fold, respectively. 

Freely soluble drugs displayed improved AFE and AAFE as compared to solubility-limited 

compounds, with an AFE of 0.796 (or 1.26-fold underprediction) compared to 1.46 for Do ≤ 1 
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and Do > 1 and AAFE of 2.81 and 3.31. There was an apparent difference in R and CCC for 

predicted vs. observed oral data for APIs divided based on the Do cut-off point, with 

calculated R coefficients of 0.850 and 0.0684 for Do ≤ 1 and Do > 1, , and CCC of 0.837 and 

0.0640 (Figure 10).  

 

There were only 86 simulations and 3 APIs in the Do ≤ 1 group for which Frel was obtainable, 

whereas there were 594 simulations and 21 APIs in the Do > 1 enabling calculation of Frel. 

Thus, there were a very limited number of comparators in the Do ≤ 1 group. However, the 

two groups displayed comparable percent within two, three, and ten-fold (66.7%, 66.7% and 

100%, respectively for Do ≤ 1 and 76.2%, 81% and 100% for Do > 1), and comparable 

precision with AAFE of 1.66 and 1.67 for Do ≤ 1 and Do > 1. One area of noticeable 

difference was in the overall bias of the Frel predictions, for which the Do > 1 group displayed 

an overall negative bias with AFE of 0.681 (a 1.47-fold underprediction) and the Do ≤ 1 

group displayed a positive bias with an AFE of 1.38 (Figure 10). 

 

Freely soluble APIs (compounds with Do ≤ 1) displayed slightly poorer performance in Cmax 

prediction with respect to percent within N-fold, AFE and AAFE, while displaying a minor 

improvement in correlation between predicted and observed Cmax, (R and CCC of 0.627 and 

0.533, respectively, vs. 0.442 and 0.438 for solubility limited compounds; Table A2). 
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Figure 10: Statistical metrics of prediction success of oral AUC0-t,last (A-C) and Frel (D-F) as 

compared to the biopharmaceutics classification system (BCS) dose number (Do) divided into 

freely soluble (Do ≤ 1) and solubility limited (Do > 1) drug substances.  

 

3.4. Interpretation 

The purpose of this large-scale simulation exercise was to evaluate and identify areas for 

improvement in the current PBPK modelling approach to predicting oral exposure, 

bioavailability and biopharmaceutics effects. The analysis of the simulation exercise 

managed to highlight both cases where the PBPK absorption modelling approach performed 

in line with clinical data and cases within the drug-specific parameter space where 

simulations deviated from the expected. 
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There are challenges in interpreting the results of this analysis, as performance is a function 

of data, model and modeller. Data to inform parameters may be of varied quality and in many 

cases was lacking, and clinical data may be misrepresentative due to low sample sizes or high 

variability. Models may fail to appropriately describe gastrointestinal physiology, 

morphology and the underlying processes governing Foral. The modellers’ interpretation and 

selection of input parameters can also significantly impact performance. 

 

One should be cautious when interpreting the impact of drug-specific properties on the 

success of PBPK predictions of oral exposure in the current study, due to the heterogeneity 

and variable nature of the analysed dataset. There was lack of uniformity in reported API 

parameter data, with data sources and availability of preclinical and clinical data differing 

widely between APIs. There was also an intention to examine the impact of user differences 

on the prediction success, thus modellers were relatively unrestricted in their selections of 

input data and modelling approaches. Some of these decisions included: Selection of 

clearance sources for extrapolation, methods for estimating volume of distribution, 

permeability assays used to inform Peff, selection of solubility and/or dissolution sources and 

formulation properties.  Further, simulations were carried out only for APIs which fulfilled 

minimal criteria for available data with a degree of missingness allowed for certain 

parameters (BP and logP) which were replaced with estimates. 

 

The high degree of missingness together with a lack of information regarding experimental 

protocols could be attributed to historical compounds for which key information was not 

generated, including for example information on the contribution of metabolic pathways, 

main route of elimination and biorelevant solubility. However, the prevalence of historic 
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compounds within the OrBiTo database could not be confirmed due to its blinded nature. 

Certain elements of missing information may also be due to lack of data or the inability to 

disclose data to outside parties. Other reasons for missing information may be due to unclear 

standards for the information required and/or desired for prospective PBPK modelling, e.g. 

lack of pre-clinical data for a number of APIs. The key missing data which may influence 

model performance will be addressed throughout the OrBiTo project through EFPIA effort in 

generating the data and updating their dataset. 

 

Limitations of the simulation exercise put into question whether a true evaluation of PBPK 

absorption model performance was in fact successful. One can argue that without a full 

dataset of input parameters to inform the model the boundaries cannot fully be tested. The 

utilisation of a minimum set of input parameters in most cases will result in an advanced 

model collapsing down to a simpler one, e.g. a lack of particle size distributional parameters 

for a given formulation will collapse down to modelling a single uniform particle size 

(measured or assumed).  

 

However, the broad spectrum analysis of this exercise was able to identify several areas for 

future model improvement and key inputs needed for building a robust model, which may not 

have been possible with a smaller scale evaluation of a more data-rich compound set (Table 

3). Cautious interpretation of the current findings can be used to inform future directions for 

improvement of in silico models and available inputs, which should then be evaluated with 

more targeted test sets. For example, a set of data-rich compounds of high lipophilicity and 

low aqueous solubility, but relatively high in vivo relative bioavailability could be used to test 

improvements in in silico biorelevant solubility predictions. A set of data-rich BCS III 
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compounds with high solubility and low fraction absorbed could be used to evaluate 

improvements of intestinal surface area estimates and the contribution of colonic absorption. 

 

Table 3: Areas for Improvement Checklist 

 
Areas for Improvement Checklist  

 
Fa less than 90% – improve scaling of in vitro to in vivo permeability, and in 

silico models of intestinal surface area and transporters 

 
Low Aqueous Solubility and/or High LogP – improve in silico models and 

in vitro availability of biorelevant solubility and dissolution 

 Acids – improve predictions of CL, Vd and permeability 

 
Weak bases – improve in silico predictions of precipitation and availability of 

in vitro data 

 No reported LogP – improve availability of logP measurements 

 
Low BP and/or low fup – investigate influence of blood and plasma binding 

on underpredictions of hepatic CL for highly plasma bound compounds  

 

Several tasks are identified in OrBiTo WP4 and across the whole consortium to address the 

points highlighted in this paper. One task addresses the dynamic calculation of bile salt 

concentration in the GI tract, while another is making changes to the GI tract physiology, and 

proposing a more biorelevant model for gastric emptying, lumen and mucosal liquid volumes, 

together with a gallbladder emptying model. Other projects include proposing new models 

for supersaturation and precipitation, new algorithms for passive and active permeability and 

finally a new model for lymphatic absorption.   

In parallel to these model improvements, the learning of where models perform well and 

where they need to improve will also guide the future data collection work or data completion 
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work needed from the EFPIA companies. The database will be complemented with missing 

information on existing drug records such as rCYP in vitro characterisation of Vmax and Km 

of the main enzymes involved in the drug metabolism when pre-systemic extraction is 

suspected, measurements of log P, pKa, aqueous solubility or solubility in biorelevant media. 

This work also highlights the need for more EFPIA examples of drugs that are relevant for 

intestinal absorption and oral formulation modelling such as poorly absorbed compounds and 

weak bases with their precipitation characterisation. All of these examples if they exist could 

be fed into the OrBiTo database in order to enrich the dataset with more relevant examples.  

4. Conclusion 

The results of this exercise suggest that PBPK modelling of oral bioavailability generally 

performs well for well-behaved compounds (e.g. neutral or strong base, mid-range logP 

(2.545 to 3.3), high permeability, high solubility, BP >0.64 and fup > 0.05). However, as 

shown in this study, an increasing level of complexity, e.g. solubility and permeability 

limitations, and increasing complexity of delivery system, were met with decreased 

prediction performance. In such scenarios, modelling efforts may rely more heavily on 

quality of input data, model assumptions, and modeller experience.  It would therefore be 

advisable to take into account the increasing degree of uncertainty on prediction success.  

For interpreting the results of this study, one must take into perspective the level of 

availability, detail and quality of data that was used to generate simulations as well as the 

limitation in contact that could occur between modellers and API owners which would 

normally occur in the pharmaceutical industry. As such, this approach therefore can be 

regarded as an opportunistic blinded modelling exercise driven by availability of parameter 

data. It is the opinion of the authors’ that future similar simulation exercises should strive for 

a more synergistic approach between data gathering and model building in order to ensure the 
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exercise to produce relevant results. Further analysis of the simulation output is required to 

explore the performance of formulation and food effects.    
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Appendix  
 

  

 Table A1: Summary statistics for AUC0-t,last predictions for p.o. simulations, grouped by 

different compound specific properties. 

 

no. 

APIs 

% 

within 

2 fold 

% 

within 

3 fold 

% 

within 

10 fold 

AFE AAFE R CCC R  

(of log 

data) 

CCC  

(of log 

data) 

Molecular Weight           

Q1: (150,365 g/mol] 11 27.3 54.5 81.8 1.25 3.91 -0.129 -0.0427 0.486 0.453 

Q2: (365,440 g/mol] 10 40.0 50.0 80.0 0.604 3.36 0.0851 0.0784 0.734 0.712 

Q3: (440,505 g/mol] 11 36.4 54.5 100 2.32 2.75 0.557 0.439 0.952 0.884 

Q4: (505,870 g/mol] 11 45.5 63.6 90.9 1.53 2.94 0.372 0.186 0.744 0.728 

Acid/Base Nature 
          

Acid 10 10.0 20.0 70.0 1.16 6.33 -0.0921 -0.0480 0.713 0.700 

Ampholyte 4 0.00 25.0 50.0 1.81 9.54 -0.284 -0.0559 0.723 0.516 

Neutral 5 40.0 80.0 100 1.92 1.92 0.891 0.340 0.836 0.541 

Weak Base 11 36.4 45.5 100 1.30 3.26 0.641 0.380 0.736 0.679 

Strong Base 13 69.2 92.3 100 1.11 1.63 0.929 0.928 0.949 0.947 

LogP           

Q1: (-0.72 , 2.545] 9 44.4 66.7 88.9 1.83 3.34 0.0411 0.0183 0.495 0.444 

Q2: (2.545 , 3.3] 9 55.6 66.7 100 1.14 2.17 0.862 0.836 0.803 0.784 

Q3: (3.3 , 4.49] 8 37.5 62.5 87.5 1.86 3.32 0.465 0.183 0.461 0.423 

Q4: (4.49 , 7.75] 9 33.3 55.6 77.8 0.899 3.03 0.0489 0.0481 0.878 0.877 

Not Given 8 12.5 25.0 87.5 1.11 4.91 -0.0936 -0.0913 0.483 0.483 

LogD           

Q1: (-1.45,1.29] 7 14.3 28.6 57.1 2.19 7.59 -0.239 -0.083 0.457 0.425 

Q2: (1.29,2.55] 7 42.9 42.9 100 1.54 3.01 0.885 0.241 0.712 0.600 

Q3: (2.55,3.17] 7 42.9 57.1 85.7 0.648 3.86 0.0692 0.016 0.541 0.515 

Q4: (3.17,5.8] 7 14.3 57.1 85.7 1.53 3.04 0.887 0.432 0.717 0.695 

Not Given 15 53.3 73.3 100 1.22 2.08 0.846 0.834 0.944 0.937 

BCS Classification           

BCS class I 8 37.5 62.5 87.5 0.796 2.81 0.850 0.837 0.765 0.740 

BCS class II 24 33.3 54.2 91.7 1.55 3.30 0.0327 0.0304 0.780 0.759 

BCS class III 2 100 100 100 0.694 1.44 1.00 0.0923 1.00 0.132 

BCS class IV 9 33.3 44.4 77.8 1.47 4.00 0.103 0.0995 0.751 0.727 

Dose number           

Do ≤ 1 8 37.5 62.5 87.5 0.796 2.81 0.85 0.837 0.765 0.74 

Do > 1 35 37.1 54.3 88.6 1.46 3.31 0.0684 0.064 0.77 0.759 

Estimated fa           

fa < 0.9 15 46.7 60 73.3 1.47 3.47 -0.0389 -0.0110 0.776 0.768 

fa ≥ 0.9 28 32.1 53.6 96.4 1.22 3.08 0.199 0.195 0.728 0.72 

BP           

Q1: (0.517,0.595] 11 0.00 27.3 72.7 0.951 5.91 0.0147 0.0136 0.702 0.701 

Q2: (0.595,0.640] 9 33.3 44.4 77.8 2.13 4.46 -0.112 -0.101 0.787 0.761 

Q3: (0.640,0.925] 12 50.0 66.7 100 1.57 2.12 0.825 0.727 0.831 0.786 

Q4: (0.925,3.300] 11 63.6 81.8 100 0.98 2.09 0.921 0.908 0.807 0.802 

fup           

Q1: (0.0002,0.0125] 11 27.3 45.5 72.7 1.41 4.54 -0.0658 -0.0614 0.811 0.804 

Q2: (0.0125,0.05] 10 40.0 60.0 90.0 1.04 2.84 0.00985 0.00851 0.587 0.577 
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Q3: (0.05,0.0855] 11 36.4 63.6 100 2.25 2.68 0.527 0.400 0.894 0.808 

Q4: (0.0855,0.74] 11 45.5 54.5 90.9 0.854 3.03 0.866 0.810 0.699 0.686 

 

Table A2: Summary statistics for Cmax predictions for p.o. simulations, grouped by different 

compound specific properties. 

 

no. 

APIs 

% 

within 

2 fold 

% 

within 

3 fold 

% 

within 

10 fold 

AFE AAFE R CCC R  

(of log 

data) 

CCC  

(of log 

data) 

Molecular Weight           

Q1: (150,365 g/mol] 11 27.3 45.5 81.8 0.612 4.07 0.178 0.176 0.596 0.558 

Q2: (365,440 g/mol] 10 50.0 60.0 80.0 0.416 3.20 0.478 0.388 0.761 0.692 

Q3: (440,505 g/mol] 11 54.5 81.8 90.9 0.819 2.36 0.969 0.631 0.952 0.867 

Q4: (505,870 g/mol] 11 27.3 63.6 90.9 0.667 3.38 0.651 0.632 0.716 0.696 

Acid/Base Nature           

Acid 10 10.0 30.0 60.0 0.329 7.22 0.146 0.144 0.800 0.677 

Ampholyte 4 25.0 25.0 75.0 2.00 4.21 0.668 0.228 0.932 0.706 

Neutral 5 60.0 100 100 0.668 1.73 0.922 0.749 0.816 0.744 

Weak Base 11 45.5 72.7 90.9 0.806 2.76 0.783 0.644 0.741 0.725 

Strong Base 13 53.8 76.9 100 0.536 2.24 0.457 0.362 0.886 0.830 

LogP           

Q1: (-0.72 , 2.545] 9 11.1 66.7 100 0.923 2.88 0.730 0.516 0.787 0.725 

Q2: (2.545 , 3.3] 9 44.4 66.7 88.9 0.679 2.66 0.318 0.274 0.615 0.575 

Q3: (3.3 , 4.49] 8 75.0 75.0 75.0 0.925 2.72 0.610 0.530 0.105 0.105 

Q4: (4.49 , 7.75] 9 33.3 55.6 66.7 0.234 5.36 0.294 0.032 0.798 0.694 

Not Given 8 37.5 50.0 100 0.694 2.88 0.258 0.255 0.743 0.722 

LogD           

Q1: (-1.45,1.29] 7 14.3 42.9 71.4 1.12 4.73 -0.0136 -0.0131 0.632 0.61 

Q2: (1.29,2.55] 7 42.9 85.7 100 0.903 2.16 0.962 0.557 0.865 0.805 

Q3: (2.55,3.17] 7 14.3 28.6 85.7 0.512 4.38 0.668 0.309 0.558 0.518 

Q4: (3.17,5.8] 7 71.4 85.7 85.7 0.645 2.48 0.778 0.751 0.683 0.665 

Not Given 15 46.7 66.7 86.7 0.416 3.09 0.686 0.64 0.903 0.819 

BCS Classification           

BCS class I 8 37.5 62.5 75.0 0.605 4.01 0.627 0.533 0.597 0.529 

BCS class II 24 45.8 66.7 91.7 0.759 2.66 0.443 0.443 0.857 0.832 

BCS class III 2 0.00 50.0 100 0.222 4.51 1.00 0.00868 1.00 0.0278 

BCS class IV 9 33.3 55.6 77.8 0.45 3.9 0.44 0.0493 0.708 0.646 

Dose number           

Do ≤ 1 8 37.5 62.5 75 0.605 4.01 0.627 0.533 0.597 0.529 

Do > 1 35 40 62.9 88.6 0.619 3.03 0.442 0.438 0.818 0.791 

Estimated fa           

fa < 0.9 15 20 46.7 73.3 0.337 5.05 0.0876 0.0781 0.759 0.688 

fa ≥ 0.9 28 50 71.4 92.9 0.851 2.5 0.512 0.51 0.805 0.792 

BP           

Q1: (0.517,0.595] 11 27.3 45.5 45.5 0.247 7.36 0.242 0.224 0.698 0.604 

Q2: (0.595,0.640] 9 44.4 66.7 100 0.889 2.58 0.425 0.421 0.946 0.927 

Q3: (0.640,0.925] 12 50.0 75.0 100 0.903 2.01 0.678 0.340 0.821 0.812 

Q4: (0.925,3.300] 11 36.4 63.6 100 0.75 2.73 0.760 0.636 0.746 0.722 

fup           

Q1: (0.0002,0.0125] 11 36.4 54.5 81.8 0.413 3.99 0.458 0.436 0.883 0.819 

Q2: (0.0125,0.05] 10 60.0 80.0 80.0 0.661 2.88 0.315 0.311 0.629 0.610 
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Q3: (0.05,0.0855] 11 45.5 63.6 100 0.839 2.40 0.645 0.491 0.786 0.772 

Q4: (0.0855,0.74] 11 18.2 54.5 81.8 0.633 3.73 0.499 0.495 0.665 0.646 

 

 

Table A3: Summary statistics for Foral predictions between p.o. and i.v. simulations, grouped 

by different compound specific properties. 

 

no. 

APIs 

% 

within 

2 fold 

% 

within 

3 fold 

% 

within 

10 fold 

AFE AAFE R CCC R  

(of log 

data) 

CCC  

(of log 

data) 

Molecular Weight           

Q1: (150,365 g/mol] 5 100 100 100 1.08 1.29 0.215 0.198 0.123 0.111 

Q2: (365,440 g/mol] 4 50.0 50.0 75.0 0.701 3.93 -0.243 -0.226 -0.150 -0.144 

Q3: (440,505 g/mol] 

4 75.0 100 100 1.25 1.58 -0.325 -0.119 -0.314 

-

0.0894 

Q4: (505,870 g/mol] 4 25.0 75.0 100 1.05 2.47 -0.156 -0.127 0.222 0.221 

Acid/Base Nature           

Acid 5 80.0 80.0 80.0 0.581 2.40 -0.574 -0.478 -0.512 -0.189 

Ampholyte 0          

Neutral 0          

Weak Base 4 25.0 75.0 100 1.48 2.46 -0.557 -0.296 -0.485 -0.363 

Strong Base 8 75.0 87.5 100 1.16 1.69 0.794 0.767 0.839 0.815 

LogP           

Q1: (-0.72 , 2.545] 6 66.7 100 100 0.819 1.61 0.671 0.607 0.729 0.548 

Q2: (2.545 , 3.3] 1 100 100 100 0.92 1.09     

Q3: (3.3 , 4.49] 4 50.0 50.0 100 2.21 2.29 0.464 0.170 0.554 0.125 

Q4: (4.49 , 7.75] 4 75.0 75.0 75.0 0.477 3.32 0.588 0.412 0.257 0.223 

Not Given 2 50.0 100 100 1.76 1.76 -1.00 -0.236 -1.00 -0.231 

LogD           

Q1: (-1.45,1.29] 3 66.7 66.7 66.7 0.418 4.17 -0.855 -0.706 -0.823 -0.283 

Q2: (1.29,2.55] 4 25.0 100 100 0.797 1.96 0.540 0.515 0.530 0.422 

Q3: (2.55,3.17] 1 100 100 100 1.59 1.59     

Q4: (3.17,5.8] 4 75.0 75.0 100 1.49 1.85 0.755 0.297 0.907 0.245 

Not Given 5 80.0 80.0 100 1.36 1.58 0.61 0.584 0.803 0.75 

BCS Classification           

BCS class I 3 100 100 100 0.94 1.06 0.928 0.653 0.928 0.66 

BCS class II 9 66.7 77.8 100 1.82 1.94 0.478 0.3 0.768 0.591 

BCS class III 1 0.00 100 100 0.497 2.01     

BCS class IV 4 50.0 75.0 75.0 0.329 3.81 0.55 0.34 0.209 0.155 

Dose number           

Do ≤ 1 3 100 100 100 0.94 1.06 0.928 0.653 0.928 0.66 

Do > 1 14 57.1 78.6 92.9 1.02 2.36 0.18 0.179 0.286 0.283 

Estimated fa           

fa < 0.9 6 66.7 83.3 83.3 0.499 2.53 0.451 0.373 0.326 0.276 

fa ≥ 0.9 11 63.6 81.8 100 1.47 1.83 0.517 0.439 0.643 0.575 

BP           

Q1: (0.517,0.595] 3 66.7 66.7 66.7 0.377 3.94 -0.728 -0.566 -0.665 -0.232 

Q2: (0.595,0.640] 5 80.0 100 100 1.32 1.57 0.602 0.568 0.906 0.862 

Q3: (0.640,0.925] 2 50.0 50.0 100 2.45 2.45 1.00 0.329 1.00 0.228 
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Q4: (0.925,3.300] 7 57.1 85.7 100 0.973 1.78 0.641 0.641 0.675 0.674 

fup           

Q1: (0.0002,0.0125] 4 100 100 100 1.13 1.41 0.797 0.771 0.968 0.940 

Q2: (0.0125,0.05] 5 60.0 60.0 80.0 0.819 3.35 -0.719 -0.712 -0.595 -0.442 

Q3: (0.05,0.0855] 4 50.0 75.0 100 1.91 1.99 0.744 0.644 0.874 0.754 

Q4: (0.0855,0.74] 4 50.0 100 100 0.602 1.66 0.956 0.800 0.938 0.633 

 

Table A4: Summary statistics for Frel predictions between p.o. and solution simulations, 

grouped by different compound specific properties. 

 

no. 

APIs 

% 

within 

2 fold 

% 

within 

3 fold 

% 

within 

10 fold 

AFE AAFE R CCC R  

(of log 

data) 

CCC  

(of log 

data) 

Molecular Weight           

Q1: (150,365 g/mol] 6 66.7 66.7 100 0.928 1.77 -0.743 -0.304 -0.626 -0.362 

Q2: (365,440 g/mol] 7 57.1 71.4 100 0.482 2.07 0.827 0.427 0.704 0.242 

Q3: (440,505 g/mol] 4 100 100 100 1.29 1.29 0.774 0.287 0.779 0.224 

Q4: (505,870 g/mol] 7 85.7 85.7 100 0.693 1.47 0.894 0.82 0.726 0.465 

Acid/Base Nature           

Acid 3 100 100 100 0.868 1.35 0.466 0.136 0.523 0.113 

Ampholyte 2 50.0 50.0 100 1.56 2.07 -1.00 -0.527 -1.00 -0.351 

Neutral 3 66.7 66.7 100 0.578 1.73 -0.986 -0.352 -0.968 -0.462 

Weak Base 8 62.5 75.0 100 0.656 1.87 0.195 0.130 0.148 0.0671 

Strong Base 8 87.5 87.5 100 0.727 1.49 0.798 0.719 0.631 0.448 

LogP           

Q1: (-0.72 , 2.545] 3 66.7 66.7 100 0.567 2.05 -0.788 -0.234 -0.704 -0.332 

Q2: (2.545 , 3.3] 9 66.7 66.7 100 0.745 1.77 0.393 0.359 0.236 0.181 

Q3: (3.3 , 4.49] 4 100 100 100 1.06 1.19 0.991 0.871 0.982 0.885 

Q4: (4.49 , 7.75] 4 75.0 75.0 100 0.537 1.87 0.985 0.510 0.946 0.250 

Not Given 4 75.0 100 100 0.888 1.55 -0.157 -0.146 -0.231 -0.220 

LogD           

Q1: (-1.45,1.29] 3 100 100 100 0.868 1.35 0.466 0.136 0.523 0.113 

Q2: (1.29,2.55] 4 75.0 75.0 100 0.829 1.70 0.136 0.125 0.0478 0.0368 

Q3: (2.55,3.17] 

4 75.0 75.0 100 1.09 1.66 0.0683 0.0662 -0.0243 

-

0.0236 

Q4: (3.17,5.8] 4 50.0 75.0 100 0.606 1.88 -0.392 -0.179 -0.341 -0.214 

Not Given 9 77.8 77.8 100 0.624 1.68 0.853 0.762 0.744 0.485 

BCS Classification           

BCS class I 3 66.7 66.7 100 1.38 1.66 -0.49 -0.278 -0.476 -0.185 

BCS class II 16 75 81.3 100 0.717 1.65 0.499 0.416 0.435 0.351 

BCS class III 1 100 100 100 0.784 1.28     

BCS class IV 4 75 75 100 0.537 1.87 0.985 0.51 0.946 0.25 

Dose number           

Do ≤ 1 3 66.7 66.7 100 1.38 1.66 -0.49 -0.278 -0.476 -0.185 

Do > 1 21 76.2 81 100 0.681 1.67 0.514 0.434 0.464 0.331 

Estimated fa           

fa < 0.9 8 87.5 87.5 100 0.681 1.56 0.555 0.457 0.61 0.324 

fa ≥ 0.9 16 68.8 75 100 0.778 1.72 0.425 0.375 0.275 0.244 

BP           

Q1: (0.517,0.595] 3 100 100 100 0.615 1.63 0.999 0.912 0.996 0.814 

Q2: (0.595,0.640] 8 62.5 75.0 100 0.678 1.89 -0.109 -0.0845 0.0833 0.0609 
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Q3: (0.640,0.925] 8 75.0 75.0 100 0.681 1.57 0.683 0.540 0.664 0.337 

Q4: (0.925,3.300] 
5 80.0 80.0 100 1.11 1.52 -0.0527 -0.0156 -0.174 

-

0.0427 

fup           

Q1: (0.0002,0.0125] 5 60.0 80.0 100 0.611 1.80 0.576 0.303 0.689 0.187 

Q2: (0.0125,0.05] 8 75.0 75.0 100 0.674 1.66 0.515 0.416 0.454 0.363 

Q3: (0.05,0.0855] 6 66.7 66.7 100 0.988 1.89 0.275 0.271 0.161 0.151 

Q4: (0.0855,0.74] 5 100 100 100 0.755 1.33 0.709 0.493 0.757 0.589 

 

 

Table A5: Summary statistics for CL or CL/F predictions for i.v. and p.o. simulations, 

grouped by different compound specific properties. 

 

no. 

APIs 

% within 

2 fold 

% 

within 3 

fold 

% 

within 

10 fold 

AFE AAFE R CCC R  

(of log 

data) 

CCC  

(of log 

data) 

Molecular Weight           

Q1: (150,365 g/mol] 11 27.3 45.5 81.8 0.736 4.02 0.261 0.0852 0.382 0.285 

Q2: (365,440 g/mol] 10 40 50 80 1.45 3.70 0.668 0.607 0.524 0.481 

Q3: (440,505 g/mol] 11 27.3 36.4 100 0.375 3.51 0.448 0.181 0.626 0.469 

Q4: (505,870 g/mol] 11 36.4 45.5 90.9 0.553 3.48 0.613 0.0676 0.538 0.481 

Acid/Base Nature           

Acid 10 10.0 10.0 80.0 0.832 6.84 -0.0331 -0.0329 0.238 0.212 

Ampholyte 4 25.0 25.0 50.0 0.642 8.17 0.919 0.0712 0.468 0.35 

Neutral 5 40.0 60.0 100 0.430 2.33 0.856 0.116 0.791 0.225 

Weak Base 11 27.3 27.3 90.9 0.611 4.06 0.0307 0.0235 0.496 0.379 

Strong Base 13 53.8 84.6 100 0.754 1.95 0.756 0.754 0.801 0.754 

LogP           

Q1: (-0.72 , 2.545] 9 44.4 55.6 88.9 0.502 3.56 0.532 0.499 0.497 0.345 

Q2: (2.545 , 3.3] 9 55.6 66.7 100 0.827 2.31 0.211 0.153 0.500 0.477 

Q3: (3.3 , 4.49] 8 25.0 50.0 87.5 0.481 3.62 0.812 0.081 0.786 0.681 

Q4: (4.49 , 7.75] 9 22.2 22.2 88.9 0.878 4.16 0.408 0.372 0.524 0.479 

Not Given 8 12.5 25.0 75.0 0.78 5.65 0.148 0.0884 0.422 0.401 

LogD           

Q1: (-1.45,1.29] 7 14.3 28.6 71.4 0.459 7.08 0.721 0.0724 0.488 0.458 

Q2: (1.29,2.55] 7 28.6 42.9 100 0.610 3.27 0.448 0.430 0.554 0.471 

Q3: (2.55,3.17] 7 57.1 57.1 85.7 1.65 3.64 0.216 0.212 0.315 0.281 

Q4: (3.17,5.8] 7 14.3 28.6 71.4 0.455 4.41 0.185 0.0734 0.795 0.527 

Not Given 15 40.0 53.3 100 0.672 2.63 0.203 0.169 0.516 0.488 

BCS Classification           

BCS class I 8 37.5 62.5 87.5 1.23 2.83 0.177 0.0636 0.458 0.434 

BCS class II 24 29.2 37.5 87.5 0.567 3.91 0.428 0.423 0.528 0.464 

BCS class III 2 100 100 100 1.45 1.45 1 0.947 1 0.845 

BCS class IV 9 22.2 33.3 88.9 0.529 4.82 0.733 0.0794 0.596 0.56 

Dose number           

Do ≤ 1 8 37.5 62.5 87.5 1.23 2.83 0.177 0.0636 0.458 0.434 

Do > 1 35 31.4 40 88.6 0.588 3.9 0.347 0.0885 0.545 0.509 

Estimated fa           

fa < 0.9 15 40 46.7 80 0.604 4 0.3 0.0661 0.585 0.55 
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fa ≥ 0.9 28 28.6 42.9 92.9 0.716 3.51 0.404 0.402 0.458 0.436 

BP           

Q1: (0.517,0.595] 11 0.00 18.2 81.8 1.02 6.31 0.197 0.0464 0.435 0.431 

Q2: (0.595,0.640] 9 11.1 11.1 66.7 0.298 7.00 0.189 0.123 0.231 0.165 

Q3: (0.640,0.925] 12 50.0 58.3 100 0.577 2.35 0.537 0.243 0.730 0.632 

Q4: (0.925,3.300] 11 63.6 81.8 100 1.03 2.05 0.793 0.790 0.624 0.621 

fup           

Q1: (0.0002,0.0125] 11 18.2 18.2 63.6 0.53 6.68 0.0460 0.0356 0.362 0.281 

Q2: (0.0125,0.05] 10 30.0 40.0 100 0.758 3.40 0.0589 0.0587 0.209 0.203 

Q3: (0.05,0.0855] 11 36.4 63.6 100 0.445 2.66 0.648 0.580 0.824 0.708 

Q4: (0.0855,0.74] 11 45.5 54.5 90.9 1.17 2.98 0.353 0.0553 0.523 0.487 

 

Table A6: Summary statistics for Vd or Vd/F predictions for i.v. and p.o. simulations, grouped 

by different compound specific properties. 

 

no. 

APIs 

% 

within 2 

fold 

% 

within 3 

fold 

% 

within 

10 fold 

AFE AAFE R CCC R  

(of log 

data) 

CCC  

(of log 

data) 

Molecular Weight           

Q1: (150,365 g/mol] 11 27.3 63.6 100 1.33 2.94 0.895 0.189 0.804 0.689 

Q2: (365,440 g/mol] 10 30.0 60.0 80.0 2.06 3.23 0.448 0.340 0.601 0.524 

Q3: (440,505 g/mol] 11 36.4 72.7 90.9 0.968 2.6 0.308 0.270 0.637 0.636 

Q4: (505,870 g/mol] 11 45.5 54.5 100 1.08 2.74 0.0893 0.0374 0.442 0.39 

Acid/Base Nature           

Acid 10 10.0 40.0 90.0 1.52 4.87 0.306 0.141 0.616 0.568 

Ampholyte 4 0.00 25.0 75.0 0.659 5.53 0.848 0.116 0.325 0.216 

Neutral 5 60.0 80.0 100 1.76 1.90 0.920 0.378 0.924 0.792 

Weak Base 11 36.4 63.6 90.9 1.33 2.62 0.146 0.046 0.707 0.600 

Strong Base 13 53.8 84.6 100 1.2 1.96 0.694 0.687 0.670 0.633 

LogP           

Q1: (-0.72 , 2.545] 9 33.3 66.7 100 0.917 2.67 0.637 0.596 0.802 0.745 

Q2: (2.545 , 3.3] 9 22.2 66.7 88.9 1.10 2.78 0.0359 0.0227 0.262 0.241 

Q3: (3.3 , 4.49] 8 50.0 75.0 100 1.14 2.42 0.452 0.0755 0.533 0.381 

Q4: (4.49 , 7.75] 9 44.4 55.6 88.9 2.43 3.15 0.263 0.131 0.511 0.408 

Not Given 8 25.0 50.0 87.5 1.23 3.40 0.279 0.185 0.534 0.529 

LogD           

Q1: (-1.45,1.29] 7 28.6 57.1 100 0.725 3.47 0.376 0.113 0.705 0.694 

Q2: (1.29,2.55] 7 42.9 57.1 100 0.698 2.35 0.738 0.639 0.736 0.707 

Q3: (2.55,3.17] 7 14.3 42.9 71.4 1.73 4.67 0.0981 0.0884 0.251 0.224 

Q4: (3.17,5.8] 7 28.6 71.4 100 1.37 2.44 0.425 0.122 0.817 0.755 

Not Given 15 46.7 73.3 93.3 1.89 2.45 0.437 0.358 0.601 0.515 

BCS Classification           

BCS class I 8 37.5 62.5 100 1.12 2.75 0.909 0.172 0.622 0.512 

BCS class II 24 29.2 66.7 87.5 1.31 2.86 0.347 0.319 0.65 0.626 

BCS class III 2 50 50 100 1.71 3.28 1 0.463 1 0.374 

BCS class IV 9 44.4 55.6 100 1.29 2.88 0.0934 0.0442 0.671 0.637 

Dose number           

Do ≤ 1 8 37.5 62.5 100 1.12 2.75 0.909 0.172 0.622 0.512 

Do > 1 35 34.3 62.9 91.4 1.33 2.89 0.194 0.185 0.644 0.632 

Estimated fa           

fa < 0.9 15 33.3 53.3 93.3 1.37 3.53 0.0441 0.0419 0.634 0.623 
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fa ≥ 0.9 28 35.7 67.9 92.9 1.24 2.56 0.385 0.342 0.606 0.589 

BP           

Q1: (0.517,0.595] 11 36.4 45.5 81.8 2.34 4.25 0.0059 0.00519 0.635 0.576 

Q2: (0.595,0.640] 9 11.1 44.4 88.9 1.18 3.74 0.338 0.314 0.686 0.62 

Q3: (0.640,0.925] 12 33.3 75.0 100 0.907 2.17 0.612 0.378 0.664 0.614 

Q4: (0.925,3.300] 11 54.5 81.8 100 1.11 2.10 0.888 0.886 0.642 0.639 

fup           

Q1: (0.0002,0.0125] 11 36.4 54.5 81.8 1.66 3.63 0.415 0.156 0.687 0.628 

Q2: (0.0125,0.05] 10 30.0 70.0 100 1.61 2.55 0.311 0.224 0.550 0.460 

Q3: (0.05,0.0855] 11 45.5 63.6 100 0.977 2.2 0.789 0.775 0.771 0.770 

Q4: (0.0855,0.74] 11 27.3 63.6 90.9 1.07 3.25 -0.0327 -0.0301 0.472 0.468 

 


