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ABSTRACT  20 

Background 21 

Drugs used to treat gastrointestinal diseases (GI drugs) are widely used either as prescription or over-the-22 

counter (OTC) medications and belong to both the ten most prescribed and ten most sold OTC medications 23 

worldwide. Current clinical practice shows that in many cases, these drugs are administered concomitantly 24 

with other drug products. Due to their metabolic properties and mechanisms of action, the drugs used to 25 

treat gastrointestinal diseases can change the pharmacokinetics of some co-administered drugs. In certain 26 

cases, these interactions can lead to failure of treatment or to the occurrence of serious adverse events. 27 

The mechanism of interaction depends highly on drug properties and differs among therapeutic 28 

categories. Understanding these interactions is essential to providing recommendations for optimal drug 29 

therapy.  30 

 31 

Objective 32 

To discuss the most frequent interactions between GI and other drugs, including identification of the 33 

mechanisms behind these interactions, where possible.  34 

 35 

Conclusion 36 

Interactions with GI drugs are numerous and can be highly significant clinically. Whilst alterations in 37 

bioavailability due to changes in solubility, dissolution rate and metabolic interactions can be (for the most 38 

part) easily identified, interactions that are mediated through other mechanisms, such as permeability or 39 

microbiota, are less well understood. Future work should focus on characterizing these aspects.  40 

  41 
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1. Introduction 71 

It is estimated that 60-70 million US-Americans suffer annually from various types of gastrointestinal (GI) 72 

diseases, with GI diseases being the underlying cause of approximately 10% of all deaths in the U.S.[1,2] In 73 

fact, statistical data on global sales of prescription medication from 2014 indicate that sales of drug 74 

products for the treatment of GI diseases rank 12th with regard to sales of prescription medication 75 

worldwide.[3]  76 

The term gastrointestinal diseases covers a wide range of disorders, which can be either acute or chronic. 77 

Non ulcer or functional dyspepsia, for example, is usually an acute condition that affects the upper GI tract 78 

and is expressed by symptoms such as nausea, vomiting, heartburn, bloating and stomach discomfort. The 79 

treatment of functional dyspepsia can involve various drug classes depending on the symptoms as well as 80 

the possible causative factors.[4–6] Crohn’s disease, by contrast, is a chronic inflammatory disorder that can 81 

affect any part of the GI tract from the mouth to the anus. Although as of yet there is no cure for Crohn’s 82 

disease, there are several treatment options which can relieve the symptoms and prevent relapse.[7] As 83 

illustrated by these two examples, it is evident that a diversity of drugs with different mechanisms of action 84 

are required to address the various targets across the spectrum of GI diseases.  85 

Frequently, patients are prescribed several drugs concomitantly. Drug-Drug Interactions (DDIs) are a 86 

common problem during drug treatment and can sometimes lead to failure of treatment, or can cause 87 

serious or even fatal adverse events.[8]  88 

Medications used for the treatment of GI diseases can alter the GI physiology and thus interact with the 89 

absorption of concomitant medications, but they can also alter the metabolism and/or elimination of co-90 

administered drugs, potentially resulting, on the one hand, in a lack of efficacy of the co-administered drug 91 

or, on the other hand, in adverse drug reactions. From a regulatory perspective, studies of potential drug-92 

drug interactions which lead to changes in absorption are required for the marketing authorization of 93 

medicinal products in the European Union and United States.[8,9] In particular, these studies are designed 94 
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to evaluate the effect of increased GI pH, the possibility of complexation and alterations in GI transit 95 

time.[8] Understanding the effect of GI drugs on the physiology of the GI tract and achieving a mechanistic 96 

understanding of the interaction(s) involved are key to successfully managing concomitant drug therapy. 97 

In clinical trials drug performance is determined under controlled conditions (e.g. with strict 98 

inclusion/exclusion criteria, under absence of, or controlled co-medication and with monitoring of 99 

compliance). But, in clinical practice, where a much wider variety of patient characteristics, disease states 100 

and multimorbidity is usual, the potential for DDIs is much greater. In fact, statistics show that one in a 101 

hundred hospital admissions occurs as a result of a drug-drug interaction.[10] The number of unreported/ 102 

less severe interactions is probably far greater.  103 

In addition to potential interactions with prescription drugs, one must also consider the possibility of 104 

interactions with over-the-counter medication (OTC). FDA publishes information leaflets for consumers 105 

about the most typical drug interactions that occur with specific OTC medications. It is interesting to note 106 

that four out of the twelve drugs discussed by FDA in these leaflets involve drugs used to treat 107 

gastrointestinal diseases.[11] European statistics indicate that there may be similar issues with concomitant 108 

use of OTC medication in the European Union, since 20-70% of those surveyed reported using OTC 109 

medicines.[12] 110 

Keeping in mind these statistics, as well as the fact that medications used to treat GI diseases count among 111 

the 10 most prescribed medicines - and also fall within the top 10 in terms of sales of OTC medications - 112 

worldwide,[3,13] it is evident that there is a high potential for DDIs with these medications. 113 

The objective of this review is first, to present and discuss the effects of drugs used to treat GI diseases, 114 

both prescription and OTC, on the pharmacokinetics and bioavailability of co-administered drugs and 115 

second, to identify the mechanisms behind these interactions insofar as possible. The review is organized 116 

according to the therapeutic indication of the drug (see Figure 1 for an overview) and covers drugs used 117 

to prevent/treat all major GI diseases. Although several reviews concerning DDIs of specific GI drug classes, 118 
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e.g. PPIs, are available in the literature, to the best of these authors’ knowledge this is the first to provide 119 

an overview of interactions that are likely to occur across the range of drugs used to treat GI diseases.  120 
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2. Medicines used to treat gastrointestinal diseases and their effect on co-administered drugs 121 

2.1 Agents affecting gastrointestinal motility 122 

Various neurotransmitters have an effect on GI motility and its coordination. Dopamine, for example, is 123 

present in significant amounts in the GI wall and has an inhibitory effect on motility.[14,15] Dopamine 124 

receptor antagonists are currently being used for motor disorders of the upper GI tract, gastroesophageal 125 

reflux disease, chronic dyspepsia and gastroparesis and have also been investigated for therapy of motility 126 

disorders of the lower GI tract.[16,17] Acetylcholine, by contrast, stimulates GI motility through increased 127 

contractile activity by the smooth muscle.[18,19] Serotonin, which is mainly present in the enterochromaffin 128 

cells in the enteric epithelium and colon, has a wide range of effects on the GI tract. The diversity of effects 129 

can be explained by the presence of multiple subtypes of 5-HT receptors, located on different types of 130 

cells. Both agonists and antagonists of 5-HT receptors are used for the treatment of GI diseases.[20,21]  131 

2.1.1 Prokinetic agents 132 

Prokinetic agents promote gut wall contractions and increase their coordination, thus enhancing GI 133 

motility. However, they do not disrupt the normal physiological pattern of motility.[16,17]  134 

2.1.1.1 Metoclopramide 135 

Metoclopramide is a first generation prokinetic agent with antidopaminergic properties (D1 and D2 136 

receptor antagonist). In addition, metoclopramide is a 5-HT3 receptor antagonist and a 5-HT4 receptor 137 

agonist. Metoclopramide promotes the response to acetylcholine in the upper GI tract and therefore 138 

accelerates gastric emptying and increases the tone of the lower esophageal sphincter.[22] The effect is 139 

observed in both healthy volunteers and those with GI diseases.[23–25] For example, Fink et al. 140 

demonstrated that metoclopramide accelerates gastric emptying in patients with gastroesophageal reflux 141 

disease independent of their gastric emptying status (Figures 2a and 2b).[25] Metoclopramide is used for 142 

the symptomatic treatment of postoperative or chemotherapy-induced nausea and vomiting, gastro-143 

esophageal reflux disease and gastroparesis.[23] A summary of the effects of concomitant use of 144 
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metoclopramide on the absorption of several APIs is presented in Table 1 and mechanistic explanations 145 

for the observed effects are presented in the following text.  146 

It is known that migraine attacks are often accompanied by delayed gastric emptying.[26] Tokola et al., 147 

1984, investigated the effect of metoclopramide on the absorption of tolfenamic acid in patients 148 

diagnosed with migraine. According to the protocol, the volunteers took part in the absorption studies 149 

twice in the absence of migraine and twice as soon as possible after the beginning of a migraine attack. 150 

After rectal administration of metoclopramide, the absorption of the tolfenamic acid was accelerated 151 

compared to control (rectal administration of placebo) in all subjects. However, the total bioavailability of 152 

tolfenamic acid did not change significantly.[27] A similar study had been conducted in 1975 by Volans, in 153 

which the effect of metoclopramide on the absorption of aspirin during migraine attacks was 154 

investigated.[28] In that study, the delayed gastric emptying during a migraine attack was confirmed. In 155 

addition, it was shown that the plasma levels of salicylate achieved during a migraine attack, after 156 

intramuscular administration of metoclopramide, were higher in comparison to those achieved without 157 

metoclopramide pre-treatment.  158 

Gothoni et al., 1972, reported an earlier time to achieve maximum plasma concentration (tmax) and 159 

elevated serum tetracycline concentrations in six healthy volunteers after co-administration of 160 

tetracycline with intramuscular metoclopramide. Nonetheless, the total area under the curve (AUC) 161 

remained unaltered. In the same study, an increase in the rate of absorption of oral pivampicillin was 162 

reported when administered along with metoclopramide.[29]  163 

Concomitant administration of metoclopramide has also been shown to increase the absorption rate of 164 

acetaminophen, mexiletine, lithium, droxicam and morphine. Nimmo et al., 1973, studied the absorption 165 

of acetaminophen with and without co-administration of metoclopramide in five healthy volunteers. The 166 

mean tmax was reduced from 120 min to 48 min while the mean maximum plasma concentration (Cmax) 167 

increased from 125 μg/mL to 205 μg/mL. The urinary excretion of acetaminophen was not influenced. 168 

Given the fact that tmax is a function of both absorption and elimination rates, the shortened tmax after 169 
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pre-treatment with metoclopramide indicates an enhanced absorption rate.[30] Similar results were 170 

obtained in the study of Wing et al., 1980, in which the authors demonstrated an increased absorption 171 

rate of mexiletine after co-administration of metoclopramide. Here too, it was observed that the 172 

bioavailability of mexiletine was unaltered, indicating that during chronic dosing of mexiletine, the 173 

antiarrhythmic effect is unlikely to change after concomitant use of metoclopramide.[31] In a further study 174 

by Crammer et al., 1974, it was shown that metoclopramide reduced the tmax of co-administered lithium 175 

by two hours.[32] Sánchez et al., 1989, investigated the effect of intravenous metoclopramide on the 176 

absorption of droxicam (a piroxicam prodrug) and Manana et al., 1988, investigated the effect of oral 177 

metoclopramide after concomitant administration of an oral controlled release formulation of morphine. 178 

In both cases, a significant reduction of tmax was observed, but other pharmacokinetic parameters were 179 

not significantly different.[33,34] Thus, in most studies it has been demonstrated that although concomitant 180 

administration of metoclopramide increases absorption rate, there is little or no effect on AUC, or clinical 181 

efficacy.  182 

In a study by Morris et al., 1976, it was likewise observed that the co-administration of metoclopramide 183 

resulted in an increased rate of absorption of levodopa and higher peak plasma concentrations, consistent 184 

with the earlier tmax.[35] In this case, though, the authors emphasized the fact that higher peak 185 

concentrations of levodopa may result in dyskinetic movements and therefore, this should be taken into 186 

consideration when metoclopramide is co-administered with levodopa.  187 

Considering the properties of metoclopramide and the fact that besides promoting gastric emptying, it 188 

also increases the upper small intestinal motility, administration of metoclopramide could also decrease 189 

the time available for absorption in the small intestine and thus lead to a reduction of total bioavailability. 190 

Gugler et al., 1981, explored this hypothesis by studying the absorption of cimetidine when given 191 

concomitantly with antacids or metoclopramide. The study was conducted in eight healthy volunteers and 192 

showed that there was a tendency to a shorter time to reach maximum plasma concentrations when 193 

metoclopramide was co-administered. Additionally, a decrease in AUC of approximately 22% was 194 
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observed, although in neither case did the difference reach statistical significance.[36] On the other hand, 195 

Mahony et al., 1984, conducted a clinical study with children with leukemia and reported that concomitant 196 

administration of methotrexate tablets with oral metoclopramide led to significantly lower AUC. 197 

Consistent with these findings, Pearson et al., 1985, demonstrated that a very fast or slow small intestinal 198 

transit in children with leukemia reduces the Cmax of methotrexate. [37,38]  199 

In the studies conducted by Manninen et al., co-administration of metoclopramide with digoxin in eight 200 

healthy adults or in eleven patients on digoxin therapy resulted in reduced serum digoxin 201 

concentrations.[39,40] The lower bioavailability of digoxin was attributed to its dissolution rate-limited 202 

absorption, since the changes were only observed when digoxin was given as a tablet and not when it was 203 

given as a solution. For this reason, authors suggested that fast dissolving tablets of digoxin would be less 204 

affected by co-administration of drugs which alter the GI motility. Supporting this hypothesis, Johnson et 205 

al., 1984, demonstrated that digoxin was absorbed completely and more quickly when it was given as soft-206 

gelatin capsules rather as a tablet. Oral metoclopramide reduced the tmax for both formulations, but only 207 

reduced the AUC of the tablet formulation.[41] From these two studies it is apparent that co-administration 208 

of metoclopramide may result in impaired drug absorption and decreased bioavailability in cases when a 209 

poorly soluble API exhibits dissolution-rate limited absorption.  210 

In contrast to the results discussed above, Wadhwa et al., 1986, conducted a clinical study in fourteen 211 

kidney transplant patients with the aim of increasing the bioavailability of cyclosporine. Cyclosporine is 212 

incompletely absorbed in the small intestine with a dose-dependent rate and extent of absorption. The 213 

authors reasoned the concomitant administration of cyclosporine with metoclopramide would increase 214 

the absorption rate and possibly the bioavailability of this immunosuppressive. Due to accelerated gastric 215 

emptying, there was a very significant increase in the Cmax of cyclosporine, as well as a decrease in tmax. 216 

Furthermore, an average increase of 29% in the AUC was observed (p=0.003). However, the authors 217 

concluded that further studies would be required to determine whether metoclopramide can reproducibly 218 

increase the absorption of cyclosporine on a long term basis.[42]  219 
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Overall, it appears that co-administration of metoclopramide, leads to a decreased tmax of the co-220 

administered drugs, indicating a faster rate of absorption. However, the effect of concomitant use of 221 

metoclopramide on the AUC of the co-administered drug is variable. Although the reported examples are 222 

limited, it appears that after co-administration of metoclopramide small intestinal transit may be too fast 223 

for poorly permeable (e.g. cimetidine) or poorly dissolving (e.g. digoxin) drugs to be adequately absorbed. 224 

Thus, in this case, BCS classification may be helpful in identifying potential problems in bioavailability when 225 

metoclopramide is co-administered. 226 

2.1.2 Anticholinergic agents 227 

Propantheline is an anticholinergic agent which reduces gastrointestinal motility and prolongs gastric 228 

emptying rate. It is usually used in combination with other medicines to treat stomach ulcers. As for 229 

metoclopramide, propantheline has been investigated with respect to its potential effect on the 230 

absorption of concomitant medications. As one would anticipate, propantheline decreased the absorption 231 

rate of acetaminophen and lithium when given concurrently. [30,32] Co-administration of propantheline with 232 

a rapidly and a slowly dissolving tablet of digoxin resulted in increased serum digoxin concentrations only 233 

for the slowly dissolving formulation.[39,40] 234 

2.1.3 Laxatives  235 

Laxatives promote defecation and are often used OTC for the treatment of constipation. They can be 236 

grouped in osmotic, stimulant and bulk laxatives (Table 2).[43] An overview of the effects of laxatives and 237 

antidiarrheal agents on gastrointestinal physiology is given in Table 3. Osmotic laxatives (indigestible 238 

disaccharides, sugar alcohols, synthetic macromolecules, saline laxatives) attract and retain water in the 239 

intestinal lumen by increasing the luminal osmotic pressure. Stimulant laxatives (such as bisacodyl, senna 240 

and sodium picosulfate) act locally by increasing colonic motility and decreasing water absorption in the 241 

large intestine.[44] Bulk laxatives such as bran, isphagula and sterculia adsorb and retain luminal fluids and 242 

increase the fecal mass. For constipation linked with specific diseases additional treatment options are 243 



13 
 

available: Linaclotide, an agonist of guanylate cyclase-C, stimulates fluid secretion, accelerates intestinal 244 

transit and is used for constipation-predominant irritable bowel syndrome.[45] 245 

In general, laxatives shorten GI transit time, but depending on the type of laxative, the extent of the effect 246 

on transit time through specific GI compartments may vary (Figure 3). Studies have been conducted with 247 

a variety of methods including radiopaque markers method,[46–48] following transit of a single metal sphere 248 

(diameter 6 m, density 1.4 g/ml) using a metal detector[49], [13C]-octanoate and lactose-[13C] ureide breath 249 

tests[50] and scintigraphy.[45,51–54]  250 

For healthy subjects the following observations have been reported: The total GI transit time was reduced 251 

in thirteen subjects after treatment for nine days with either the bulk laxative wheat bran (39.0 h vs. 69.0 252 

h) or the stimulant laxative senna (41.0 h vs. 69.0 h) compared to the baseline value.[46] Small intestinal 253 

transit time was reduced by bisacodyl (dose 10 mg) from approximately 2.5 h to 1.5 h in ten subjects,[49] 254 

while the osmotic laxatives polyethylene glycol and lactulose, had a minimum effect (if any) on the small 255 

intestinal transit time after being administered at a dose of 10 g twice daily for five days.[51] Administration 256 

of an isosmotic solution containing 40 g polyethylene glycol 3350 resulted in a significant decrease in oro-257 

caecal transit time from 423.8±28.1 min to 313.8±17.2 min in twelve subjects.[50] In another study, 258 

administration of 5 mg bisacodyl in twenty-five subjects significantly accelerated the transit through the 259 

ascending colon (median 6.5 h vs. 11.0 h).[54] Similarly, 10-20 mL of lactulose (Duphalac; Duphar 260 

Laboratories Ltd., England) three times daily for five days resulted in a significant decrease of the mean 261 

proximal colon transit time from 12.9±3.7 h to 7.0±2.5 h in eleven subjects.[53] The total colonic transit 262 

time was reduced to a greater extent after administration of 10 mg bisacodyl (from 31±14 h to 7±8 h) than 263 

by treatment with 30 g lactulose (from 34±12 h to 30±19 h) in ten subjects.[49] 264 

In patient populations the following observations have been reported: In twelve subjects with 265 

constipation-predominant irritable bowel syndrome, treatment with lincalotide (dose 100 μg or 1000 μg) 266 

did not affect the gastric or small intestinal transit time.[45] However, the ascending colon transit time was 267 

decreased by 54% at a high dose of 1000 μg of linaclotide. At a lower dose of 100 μg there was a decrease 268 



14 
 

of 33%, although this was not statistically significant. In line with these observations, the total colonic 269 

transit time was only significantly accelerated by the higher dose.[45] In nine subjects with chronic 270 

nonorganic constipation, treatment with an isosmotic electrolyte solution containing polyethylene glycol 271 

4000 (14.6 g) for eight weeks did not significantly alter the transit time through the proximal colon, while 272 

the transit through the left colon and rectum was significantly accelerated (46±29 h vs. 62±20 h and 37±42 273 

vs. 78±21 h, respectively).[48] The results in eight patients with slow transit constipation were similar after 274 

administration of 60 g polyethylene glycol 4000 daily for six weeks; the right colon transit time was not 275 

significantly different compared to placebo, while the transit time through the left colon was significantly 276 

accelerated (13 h vs. 45 h) resulting in a reduction of total colonic transit time from 91 h to 43 h.[47] In 277 

summary, laxatives decrease transit times in healthy subjects throughout the GI tract, while in constipated 278 

patients the effects are mainly limited to the colon. 279 

Changes in GI transit times induced by laxatives can lead to changes in bioavailability. For example, co-280 

administration of senna (20 mL of Liquidepur, Fa. Nattermann, Cologne, Germany) with a sustained-281 

release quinidine formulation (0.5 g every 12 hours) reduced quinidine plasma levels by 25% in nine 282 

patients with cardiac arrhythmia on long-term treatment, resulting in reoccurrence of supraventricular 283 

extrasystoles.[55] Similarly, polyethylene glycol 4000 reduced the absorption of digoxin by 30% when co-284 

administered with digoxin tablets (dose 0.5 mg) in eighteen healthy subjects.[56] However, it is not clear 285 

whether the same effect would be observed in cardiac patients or what the clinical ramifications would 286 

be. Further, a trend (although not statistically significant) to decreased AUC of estradiol glucuronide (dose 287 

1.5 mg) was observed when co-administered for ten days with the maximum tolerated dose of wheat bran 288 

(-13%) and senna (-10%) in twenty healthy postmenopausal women.[57]  289 

Many laxatives have been shown to alter the production of short chain fatty acids (SCFA). SCFA are usually 290 

associated with a decrease in luminal pH. After treatment with senna or wheat bran, fecal SCFA 291 

concentrations were increased in healthy subjects (n=13) by 82% and 19%, respectively.[46] After 292 

administration of senna, the pH in the middle and distal colon was decreased (6.39 vs. 6.85, 6.66 vs. 293 
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7.14).[46] Lactulose significantly acidified the contents in the lower small intestine as well as in the right 294 

colon.[58–60] Sodium sulphate also decreased the pH, with the greatest effect in the left colon.[58] By 295 

contrast, wheat bran reduced the pH in the distal colon of thirteen healthy subjects only slightly (6.88 vs. 296 

7.08).[46] But mechanisms other than via SCFA can also be at play. For example, the increase in the pH in 297 

the lower small intestine, colon and rectum observed after administration of magnesium sulphate is 298 

postulated to be the result of gastric conversion to magnesium chloride and subsequent reconversion to 299 

insoluble magnesium carbonate in the colon prompted by increased colonic bicarbonate secretion.[58] The 300 

possible pH changes observed with laxatives are not clearly associated with changes in drug product 301 

performance. For example, mesalazine release from a delayed-release, pH-dependent formulation of 302 

mesalazine (Asacol®, SmithKline Beecham, UK) was not affected by the co-administration of ispaghula husk 303 

or lactulose despite their known pH-lowering effect in the colon.[61,62] Nonetheless, the UK manufacturers 304 

of delayed-release mesalazine formulations (Asacol®, Allergan Ltd, Bucks, UK and Salofalk® granules, Dr. 305 

Falk Pharma UK Ltd, Bourne End, UK) suggest that drug release might be impaired by preparations with 306 

pH-lowering effect.[63,64]  307 

With respect to the gut microbiota, the fecal microbiota of patients with chronic idiopathic constipation 308 

(n=65) treated with lactulose over twenty-eight days was increased in Anaerobes by 3% and Bifidobacteria 309 

by 8%, while treatment with polyethylene glycol 4000 resulted in a reduced fecal amount of Bifidobacteria 310 

(-14%).[65] Lactulose administration in patients taking coumarins (acenocoumarol, phenprocoumon) 311 

increased their risk of over-anticoagulation, as assessed in a population-based cohort study, because of 312 

changes in the vitamin K production of the colonic bacterial flora. By contrast, concomitant intake of 313 

isphagula with coumarins did not alter the risk of over-anticoagulation.[66] 314 

The importance of the gut microbiota on oral pharmacotherapy is discussed in section 2.6 “Antibiotics”. 315 
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2.1.4 Antidiarrheal agents 316 

Antidiarrheal agents provide symptomatic relief of diarrhea by decreasing fluid loss, by slowing down the 317 

passage of the gastrointestinal contents through the digestive tract, by increasing fluid absorption and/or 318 

by reducing intestinal secretions.[67] They can be classified according to their mechanism of action (Table 319 

2). Opioids (such as loperamide, diphenoxylate and codeine phosphate) inhibit intestinal transit by 320 

activating μ-opioid receptors. Adsorbents and bulking agents (kaolin, isphagula, methylcellulose) adsorb 321 

water and increase the fecal mass, while the antisecretory action of racecadotril, an enkephalinase 322 

inhibitor, is linked to reducing chloride and fluid flux into the GI lumen.  323 

Differences in the GI transit time have been observed after oral loperamide administration (Figure 4). The 324 

total GI transit time was increased after loperamide administration in healthy subjects (74.0 h vs. 50.3 h, 325 

n=11), as measured by radiopaque marker pellets, presumably due to reduced, irregular motor activity 326 

and therefore, prolonged transit time in the jejunum.[46,68,69] Gastric emptying time was not significantly 327 

different in twenty-four healthy subjects treated with 4 mg loperamide compared to placebo as measured 328 

with a radio-labeled meal.[70] However, gastric residence time measured with a radiotelemetry capsule 329 

was increased two-fold in five healthy subjects treated with 8 mg loperamide (4 doses, every 6 hours).[71] 330 

Small intestinal transit time, as measured with the hydrogen breath test, was increased by 80-130% in 331 

healthy subjects receiving 4 to 8 mg of loperamide.[70–72]  332 

With respect to the composition of GI fluids, loperamide has been shown to decrease prostaglandin-E2 333 

induced water and electrolyte secretion in the jejunum of healthy volunteers and reduce postprandial 334 

secretion of trypsin and bilirubin by more than 50% in patients with short bowel syndrome.[69,73,74] 335 

Similarly, basal and amino acid stimulated gallbladder motility was decreased by loperamide (dose 8 mg) 336 

in eight healthy subjects as measured by ultrasonography and bilirubin output in the duodenum.[75] After 337 

loperamide administration fecal SCFA concentrations were decreased in healthy subjects (82.0 μmol/g wet 338 

weight vs. 152.0 μmol/g wet weight; n=13).[46]  339 
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In terms of DDIs, administration of 4 mg loperamide 24 h, 12 h and 1 h before desmopressin administration 340 

increased the bioavailability of desmopressin in eighteen healthy subjects (AUC 3.1-fold, Cmax 2.3-fold) 341 

and prolonged the time to reach the maximum plasma concentration (2 h vs. 1.3 h) without affecting the 342 

elimination half-life.[76] These effects could be explained by the decrease in GI motility. Desmopressin is 343 

highly soluble but poorly permeable (bioavailability approx. 0.1%), so longer transit times are expected to 344 

lead to a longer contact time of the drug with the absorptive mucosa.[77] Co-administration of loperamide 345 

at the maximum tolerated dose over 10-12 days also increased the AUC of estradiol glucuronide (dose 1.5 346 

mg) by 15% in twenty healthy postmenopausal women, although the difference did not reach statistical 347 

significance.[57]  348 

On the other hand, a single dose of loperamide (16 mg) decreased the bioavailability of the poorly soluble 349 

drug saquinavir (dose 600 mg) by 54% in twelve healthy subjects when administered concomitantly. This 350 

could be explained by the decreased motility and/or a reduction of electrolyte and fluid secretion which 351 

could hinder dissolution.[78] Additionally, it is possible that a decreased secretion of bile salts secondary to 352 

reduced gallbladder motility[75] impeded the solubilisation of saquinavir.  353 

On the other hand, loperamide co-administration (8 mg every 6 hours) in twelve healthy male subjects 354 

decreased the absorption rate of theophylline from a sustained-release 600 mg formulation (Cmax 3.2 355 

mg/L vs. 4.6 mg/L, tmax 20 h vs. 11 h), which could be explained by impeded release from the formulation 356 

due to a decrease in hydrodynamics (decreased motility) or perhaps a prolonged gastric residence time of 357 

the formulation/released drug. However, the AUC was not affected.[79]  358 

Last but not least, the surface of bulk laxatives and bulking agents offers a site for drug adsorption. 359 

Concomitant administration of kaolin-pectin decreased the absorption of tetracycline (20%), aspirin (5-360 

10%), procainamide (30%), quinidine (58%), trimethoprim (12-20%), lincomycin (90%), chloroquine (29%) 361 

and digoxin (15-62%), which is most likely the result of adsorption of the drugs onto kaolin.[80–88] Drug 362 
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adsorption is also observed onto dietary fibers and therefore, similar DDIs to those observed with dietary 363 

fibers are further considered in section 2.2.  364 

An overview of the effects of antidiarrheal agents on gastrointestinal physiology is given in Table 3.  365 

2.2 Dietary fibers  366 

The use of dietary fibers in the treatment of various diseases, such as diabetes, hypercholesterolemia, 367 

obesity, chronic constipation and gastrointestinal motility disorders, has increased over the last years. 368 

However, there are few studies that have investigated the impact of concomitant use of dietary fibers with 369 

other drugs. From the studies available it seems that the effect of the concomitant use of dietary fibers 370 

depends on the type of fiber used. 371 

The interaction of levothyroxine with dietary fibers is well established. Concomitant use of dietary fibers, 372 

such as oat bran, soy fiber and ispaghula husk, result in decreased bioavailability of levothyroxine, due to 373 

adsorption of the drug to the fibers in the GI tract.[89] The authors commented that the adsorption of 374 

levothyroxine to soluble fibers and the consequent reduction in bioavailability might be greater than its 375 

adsorption to insoluble fibers. The interaction with levothyroxine is also noted by FDA in a consumers’ 376 

information leaflet regarding drug interactions with food.[90]  377 

In a case study reported by Perlman, the blood levels of lithium were decreased by 48%, when a patient 378 

was treated simultaneously with lithium and ispaghula husk .[91] There is also some evidence that fibers 379 

interact with some tricyclic antidepressants. The clinical effectiveness of tricyclic antidepressants appears 380 

usually after an administration period of 2-6 weeks. During this period, due to anticholinergic effects of 381 

the drugs, constipation is a common side effect. Therefore, patients receiving antidepressant medication 382 

often ingest dietary fibers. Already in 1992, Stewart observed a decrease in plasma concentrations of three 383 

tricyclic antidepressants (amitriptyline, doxepin and imipramine) in three patients, who concurrently 384 

ingested a diet rich in fibers.[92]  385 
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There are conflicting inputs in the literature about the interaction of dietary fibers and digoxin. Brown et 386 

al., 1977, reported a significant decrease in the bioavailability of digoxin when given to twelve healthy 387 

volunteers with regular or high fiber diet concomitantly, as opposed to administering digoxin alone in the 388 

fasted state.[93] Albert et al., 1978, reported that when kaolin-pectin suspension was given simultaneously 389 

with digoxin, the total amount of digoxin absorbed was decreased by 62%. However, no significant 390 

interactions were observed when digoxin was given 2 h before the administration of the fiber 391 

suspension.[85] However, studies by Lembcke et al., 1982, and Kasper et al., 1979, found no effect on the 392 

bioavailability of digoxin when it was administered together with guar gum or other fibers.[94,95] In a later 393 

study Huupponen et al., 1984, investigated the effect of guar gum on the absorption of digoxin in ten 394 

healthy volunteers. It was demonstrated that co-administration of guar gum with digoxin resulted in 395 

reduced plasma concentrations of digoxin and a decrease of 15% of the AUC for the first six hours (p< 396 

0.05).[96]  397 

Holt et al., 1979, investigated the effect of co-administration of the soluble fibers guar gum and pectin on 398 

the absorption of acetaminophen. Concomitant administration with these fibers resulted in delayed 399 

absorption and decreased Cmax. However, the total absorption of acetaminophen was not significantly 400 

reduced. The authors attributed their results to delayed gastric emptying. Moreover, they argued that 401 

because guar gum, when hydrated, forms a viscous colloidal suspension, the high viscosity of this 402 

suspension could be a possible reason for the observed delay in gastric emptying.[97] The results from this 403 

study correlate well with the study conducted by Reppas et al., 1998, in mongrel dogs, in which the effect 404 

of elevated luminal viscosity on the absorption of acetaminophen, hydrochlorothiazide, cimetidine and 405 

mefenamic acid was investigated.[98] Elevated luminal viscosity was achieved by administering saline 406 

solutions of the water-soluble guar gum. When given concurrently with the guar gum solutions, the Cmax 407 

and AUC of the highly soluble acetaminophen and hydrochlorothiazide were significantly decreased, 408 

suggesting that the decreased rate of dissolution, due to the higher luminal viscosity, led to lower 409 

concentrations at the absorption sites. In the case of cimetidine, concurrent administration of the guar 410 
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gum solution led only to a decrease in Cmax and not AUC. For the poorly soluble but highly permeable 411 

mefenamic acid, neither the Cmax nor the AUC were significantly affected by the concomitant 412 

administration of the guar gum in dogs.[98] Huupponen et al., 1984, reported a decrease in Cmax and AUC 413 

of penicillin when given together with guar gum.[96] Finally, Astarloa et al., 1992, investigated the effect of 414 

a diet rich in insoluble fiber on the pharmacokinetics of levodopa. Consumption of two months of the 415 

dietary supplement with the usual dose of levodopa led to elevated plasma levels of levodopa especially 416 

at 30 and 60 minutes after oral administration.[99,100]  417 

It is evident from these studies that it is currently not possible to make any generalizations about DDIs 418 

with dietary fibers although it seems that there is a tendency for decreased maximum plasma 419 

concentrations of the co-administered drug. These events are likely attributable to slower gastric 420 

emptying, higher viscosity and, perhaps in some cases, adsorption phenomena.[101] It also seems that the 421 

type of interaction, if any, is highly dependent on the type of dietary fiber used. It remains to be 422 

investigated whether these interactions, such as they exist, lead to clinically significant differences. 423 

2.3 Antiemetics 424 

Antiemetics are classified according to their mechanism of action. There are five receptors that play a key 425 

role in the vomiting reflex; muscarinic, dopaminergic, histaminic, serotoninergic and substance 426 

P/neurokinin receptors.  427 

Aprepitant is a very potent neurokinin-1 receptor antagonist used for the prevention of acute and delayed 428 

chemotherapy-induced nausea and vomiting.[102,103] Aprepitant is metabolized primarily by CYP3A4 and 429 

secondarily by CYP1A2 and CYP2C19. It also acts as a moderate inhibitor of CYP1A2, CYP2C9, CYP2C19, 430 

CYP2E1 and as a weak inducer of CYP2C.[102,103] Caution is therefore necessary, especially when 431 

administered concomitantly with chemotherapy agents that are metabolized primarily by CYP3A4, as 432 

inhibition by aprepitant may lead to higher plasma levels and toxic side effects. According to the Public 433 

Assessment Report, EMEND® capsules (which contain aprepitant as API), should not be concomitantly 434 



21 
 

administered with ergot alkaloid derivatives, pimozide, terfenadine, astemizole, or cisapride, as the 435 

competitive inhibition of the CYP3A4 by aprepitant results in elevated plasma concentrations, leading to 436 

adverse effects.[103] Further pharmacokinetic interactions that have been reported for aprepitant in the 437 

literature are those with midazolam, warfarin, dexamethasone and methylprednisolone.[22,104]  438 

Majumdar et al., 2003, investigated the effect of aprepitant on the pharmacokinetics of single dose 439 

midazolam on day 1 and on day 5 during daily administration of aprepitant for five days. In this study, two 440 

dose regimens of aprepitant were used; 125/80 mg and 40/25 mg. It was concluded that co-administration 441 

of midazolam with the 125/80 mg regimen (125 mg on day 1 and 80 mg on days 2-5) resulted in a 2.3-fold 442 

increase in midazolam AUC on day 1 and a 3.3-fold increase on day 5. The plasma concentrations achieved 443 

1 h after dosing (C1h) and the half-life (t1/2) were also increased due to the inhibition of first pass and 444 

systemic metabolism and subsequent reduction in clearance. Although co-administration of midazolam 445 

with the 40/25 mg dose regimen did not result in any significant change in the pharmacokinetics of 446 

midazolam, this lower dose is not used in clinical practice.[105] Majumdar et al., 2007, later investigated the 447 

effect of aprepitant on intravenously administered midazolam and the findings were consistent with the 448 

first study, but with an increase in AUC of 1.47-fold. The authors suggested that the lower increase in AUC 449 

observed after intravenous administration of midazolam, might be due to lack of inhibition of presystemic 450 

metabolism when midazolam is given intravenously.[106]  451 

In an analogous study by McCrea et al., 2003, the effect of a 5-day administration of 125/80 mg aprepitant 452 

regimen on the pharmacokinetics of orally administered methylprednisolone and dexamethasone was 453 

evaluated. Due to the inhibition of CYP3A4 by aprepitant, the Cmax of methylprednisolone was increased 454 

1.5-fold while the AUC increased 2.5-fold. An increase of 2.2-fold in AUC was observed for 455 

dexamethasone.[107] Clinically, unnecessary high exposure to corticosteroids should be avoided due to the 456 

potential risk of adverse effects such as hyperglycemia and increased susceptibility to infections. For these 457 

reasons, it is suggested that the oral doses of dexamethasone and methylprednisolone should be reduced 458 

by half when used for the management of chemotherapy-induced nausea and vomiting concurrently with 459 
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aprepitant.[107] The interaction of aprepitant with warfarin is less clear.[108] In a study by Takaki et al., 2016, 460 

a decrease in warfarin plasma levels was observed, but no significant interaction between warfarin and 461 

aprepitant was established. One possible reason for the lack of interaction could be the fact that the 462 

volunteers who took part in this clinical study were also receiving several other chemotherapeutic agents. 463 

In any case, careful monitoring of patients on chronic warfarin therapy is required.[104,109]  464 

Serotonin plays an important role in various body functions. Most serotonin is synthesized in the GI tract 465 

and it affects various aspects of intestinal physiology. Multiple subtypes of 5-HT receptors exist on various 466 

types of cells, such as smooth muscle and enterocytes, and agonists or antagonists of 5-HT receptors are 467 

used in the treatment of different gastrointestinal disorders.[21] 5-HT3 receptor antagonists, for example 468 

ondasentron and granisetron, have been successfully used in the treatment of chemotherapy-induced 469 

nausea and vomiting. Recommendations, published by the American Society of Clinical Oncology (ASCO) 470 

for the use of the 5-HT3 receptor antagonists, do not distinguish among them with regard to their safety 471 

and efficacy. Nonetheless, these compounds differ significantly in their pharmacokinetic properties and 472 

especially with respect to their potential to interact with CYP enzymes.[110,111] Granisetron, for example, 473 

does not inhibit any of the CYP enzymes which are commonly involved in drug metabolism, whereas 474 

ondansetron inhibits both CYP1A2 and CYP2D6 and can thus interact with various concurrently used drugs.  475 

However, the interactions reported in literature are not solely attributed to their enzyme inhibitory 476 

properties. Concomitant use of ondansetron with cyclophosphamide resulted in reduced systemic 477 

exposure, probably due to increased systemic clearance.[112,113] In any case, there is a need for more studies 478 

to increase knowledge about drug interactions of chemotherapeutic agents with commonly used 479 

antiemetics, as even a slight change in the pharmacokinetic parameters or pharmacodynamics of the anti-480 

cancer medication could jeopardize the effectiveness of chemotherapy.[112] 481 
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2.4 Gastric acid reducing agents and Antacids 482 

Proton-pump inhibitors (PPIs), H2-receptor antagonists (H2RAs) and antacids are widely used in the 483 

treatment of various gastric acid related disorders, such as peptic ulcers and gastroesophageal reflux 484 

disease. In fact, PPIs and H2RAs are classified among the three most prescribed drug classes for the years 485 

2011-2014 and  the situation is similar today.[114] Indeed, esomeprazole, a proton-pump inhibitor, ranks 486 

among the top five most prescribed medications worldwide.[115] Of particular concern for these drugs is 487 

their increasing OTC use. Despite the fact that gastric antisecretory agents or antacids are tolerated well, 488 

with a low overall frequency of adverse reactions,[116] their concurrent use with other medications can 489 

have a great effect on drug absorption. If prescribed, identification of potential interactions by the 490 

prescribing physician and/or dispensing pharmacist is possible, but this control mechanism is largely lost 491 

if the drugs are obtained OTC or via e-pharmacies. 492 

2.4.1 Proton Pump Inhibitors  493 

Proton-pump inhibitors are a group of substituted benzimidazole sulfoxide drugs with strong inhibitory 494 

effects on gastric acid secretion from the parietal cells in the stomach. At present, six PPIs 495 

(dexlansoprazole, esomeprazole, lansoprazole, omeprazole, pantoprazole, rabeprazole) are available on 496 

the market.[117] PPIs are used in the treatment of acid-related disorders and for the prevention of 497 

gastrointestinal bleeding in patients receiving dual antiplatelet therapy of clopidogrel and aspirin. 498 

Furthermore, they are used as a component of combination therapy for the eradication of H. pylori, 499 

because their properties enhance the anti-H. pylori activities of the co-administered antibacterials 500 

(clarithromycin and amoxicillin).[118] PPIs can affect the absorption of the co-administered drugs to a great 501 

extent, mainly due to the increase in gastric pH. In a recent study, the effect of 40 mg of pantoprazole 502 

administered orally once per day for four days and 20 mg of the H2RA famotidine administered orally twice 503 

within 12 hours, on the GI physiology of eight healthy male volunteers was investigated.[119] In both cases, 504 

the gastric pH differed significantly in comparison to the control group (Figure 5). However, PPIs can also 505 
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affect the pharmacokinetics of co-administered drugs through other mechanisms,[120] and several excellent 506 

reviews have been written regarding the drug-drug interactions of PPIs.[121–123]  507 

As already mentioned, gastric pH is an important parameter that can affect absorption of drugs, especially 508 

these which are poorly soluble weak bases. For example, Jaruratanasirikul et al., 1998, investigated the 509 

effect of 40 mg oral omeprazole on the pharmacokinetics of a single 200 mg capsule of itraconazole in 510 

eleven healthy volunteers. Concomitant use of omeprazole resulted in reduction of the mean AUC and 511 

Cmax of itraconazole by 64% and 66% respectively. No interaction due to omeprazole’s inhibition of 512 

CYP3A4 was reported.[124] On the other hand, Johnson et al., 2003, investigated the effect of concomitant 513 

use of 40 mg oral omeprazole with a 40 mg dose oral solution of itraconazole in twenty volunteers. It was 514 

reported that there was no statistically significant difference on the AUC, tmax and Cmax with the co-515 

administration of omeprazole.[125] The results of these two clinical studies (one with a solid dosage form, 516 

one with itraconazole in solution) suggest that co-administration of omeprazole and elevation of gastric 517 

pH, affects the dissolution of itraconazole capsules rather than the permeability of itraconazole. The 518 

results regarding ketoconazole are similar. In 1995, Chin et al., conducted a clinical study with nine healthy 519 

volunteers, in which the effects of 60 mg oral omeprazole or an acidic beverage on the pharmacokinetics 520 

of orally administered 200 mg ketoconazole were investigated. Pre-treatment with omeprazole resulted 521 

in significantly lower AUC and Cmax and a prolongation of tmax.[126] Ketoconazole and itraconazole are 522 

both practically insoluble at pH>4. Co-administration of PPIs with poorly soluble imidazole antifungal 523 

agents when given as capsules or tablets is, therefore, not recommended.[127] Interestingly, the elevated 524 

gastric pH does not affect the bioavailability of fluconazole tablets.[128] This lack of interaction is 525 

underscored by the high solubility of fluconazole over the whole pH range of the GI tract. Thus, stomach 526 

acidity does not limit the dissolution rate of fluconazole or its absorption.[129,130]  527 

The increase in the gastric pH caused by PPIs can also greatly affect the bioavailability and effectiveness of 528 

anti-retroviral agents, depending on their pH/solubility profiles. Tappouni et al., 2008, conducted a clinical 529 

study with sixteen patients, in which the effect of omeprazole on indinavir was evaluated. With pre-530 
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treatment and co-administration of 20 mg oral omeprazole, the Cmax of indinavir decreased by 29% and 531 

the AUC by 34%, whereas at a higher dose of 40 mg omeprazole, the Cmax and AUC of indinavir decreased 532 

by 41% and 47% respectively.[131] Co-administration of omeprazole resulted in reduction to the systemic 533 

exposure to both nelfinavir and its metabolite. In particular, the AUC of nelfinavir was decreased by 534 

36%.[132] Tomilo et al., 2006, reported a 94% and 91% decrease in AUC and Cmax, respectively, of 400 mg 535 

oral atazanavir, when co-administered with 60 mg lansoprazole in ten healthy volunteers.[133] The results 536 

were similar when omeprazole was co-administered.[134] However, the clinical impact of this drug-drug 537 

interaction on the clinical effect of atazanavir is not clear.[135,136] It seems that co-administration of PPIs 538 

with an atazanavir/ritonavir regimen does not affect the ability of atazanavir to achieve the minimum 539 

plasma concentration necessary for the virologic response, i.e. the concomitant use of atazanavir/ritonavir 540 

regimen and PPIs was not associated with higher virologic failure rate. [135] Nonetheless, further studies, in 541 

which both the pharmacokinetic parameters and the clinical response rates are simultaneously 542 

investigated, are needed to understand the interaction and its consequences more fully. 543 

In contrast to the results mentioned so far, in the study of Winston et al., 2006, co-administration of 40 544 

mg oral omeprazole with 1000 mg saquinavir (given orally as 1000 mg saquinavir/100 mg ritonavir 545 

combination) resulted in an 82% increase in the mean AUC of saquinavir in eighteen healthy volunteers. 546 

The increase did not result in an increase in adverse effects. The authors commented that further work is 547 

necessary in order to understand the mechanism of this DDI and to address whether the effects of 548 

omeprazole on saquinavir’s pharmacokinetics would be the same even in the absence of ritonavir. The 549 

authors also discussed the possibility of whether the increase could be the result of inhibition of 550 

transmembrane-transporters, such as P-gp or MRP by omeprazole.[137]  551 

As for most of the antifungal and antiviral drugs, the absorption of mycophenolate mofetil is impaired by 552 

concomitant administration of PPIs. Kofler et al., 2009, measured the levels of mycophenolic acid (active 553 

metabolite) in thirty-three patients concurrently receiving 40 mg oral pantoprazole. Cmax and AUC of 554 

mycophenolic acid were significantly lower when patients were pretreated with pantoprazole.[138] As 555 
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anticipated, co-administration of pantoprazole with an enteric coated formulation of mycophenolic acid 556 

had no significant effect on its pharmacokinetics.[139]  557 

Apart from affecting the solubility of APIs in the stomach, an increase in the gastric pH can jeopardize the 558 

bioavailability of formulations with pH-dependent release. The effect of concomitant administration of 559 

esomeprazole on the bioavailability of risedronate sodium DR was evaluated in a clinical study involving 560 

eighty-seven postmenopausal women. The results showed that esomeprazole administration one hour 561 

before dinner or one hour before breakfast resulted in 32% and 48% reduction in the bioavailability of 562 

risedronate sodium DR, respectively. In the report, it was suggested that an increase in the gastric pH may 563 

compromise the enteric coating of risedronate delayed release formulation, thus resulting in release of 564 

risedronate sodium in the stomach, where it could convert to the less soluble free acid.[140] However, as it 565 

has been shown that PPIs (pantoprazole) decrease buffer capacity as well as increase gastric pH,[119] a 566 

premature release due to enteric coating failure appears unlikely.  567 

A review of all the available clinical data from literature describing the effect of the administration of 568 

various gastric acid reducing agents on the absorption and bioavailability of co-administered weakly basic 569 

anticancer drugs was published by Budha et al.[141] The authors attempted to correlate the physicochemical 570 

properties and pH-solubility profiles of the different anticancer drugs with the observed effect on the 571 

absorption caused by the elevation of the gastric pH after the administration of the acid reducing agents 572 

(PPIs, H2RAs and antacids). It was concluded that the impact of the elevation of gastric pH is more 573 

prominent for the anticancer drugs which exhibit an exponentially decreasing solubility in the pH range 1-574 

4 and for which the maximum dose strength is not soluble in 250 mL of water. Elevation of gastric pH is 575 

expected to substantially decrease the dissolution rate of these drug products, thus leading to incomplete 576 

dissolution of the dose and impaired absorption.  577 

In 2013, Mitra and Kesisoglou described strategies to minimize or avoid reduced absorption of weakly 578 

basic drugs resulting from elevated gastric pH.[142] 579 
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The observed DDIs with PPIs occur not only because of their elevation of gastric pH, but can also arise from 580 

other properties. It has been shown that concurrent administration of 10 mg of nifedipine with 20 mg of 581 

omeprazole for eight days (short-term treatment) resulted in an AUC increase of 26%, whereas no increase 582 

was observed after co-administration of a single 20 mg dose of omeprazole.[143] The authors hypothesize 583 

that the higher levels might be due to inhibition of CYP3A4, but they note that this increase is not likely to 584 

have major clinical relevance, especially when taking into account the intra- and inter-individual variability 585 

observed for nifedipine.[143] In contrast, in the study by Bliesath et al., 1996, co-administration of 20 mg of 586 

nifedipine with 40 mg of pantoprazole for ten days, had no effect on the pharmacokinetics of 587 

nifedipine.[144] This apparent discrepancy in DDI tendency might be due to the different CYP-isoenzymes 588 

inhibitory properties of the two PPIs. It is believed that among all PPIs, omeprazole is the one which has 589 

the greatest potential for drug interactions, since it has a high affinity for CYP2C19 and CYP3A4.[145–148]  590 

Another example of a non-pH related DDI with PPIs is the delayed elimination of plasma methotrexate, 591 

independent of renal function.[149]  592 

Last, but not least, there has been an increasing interest in investigating the mechanism of drug 593 

interactions of PPIs with clopidogrel. Clopidogrel is a prodrug that requires activation via cytochrome P450 594 

isozymes (CYP2C19, CYP3A4, CYP3A5) in order to transform to its pharmacologically active form. 595 

Therefore, inhibition of the cytochrome isoenzymes, which are involved in the metabolic pathway of 596 

clopidogrel, may reduce its antiplatelet activity and potentially increase the risk of thrombosis. In fact, in 597 

2009 FDA published a warning note on the drug label of Plavix® (clopidogrel, Sanofi Clir SNC, France) and 598 

continues to warn the public against concomitant use of clopidogrel and omeprazole. It should be noted 599 

that, although studies have demonstrated that concomitant use of clopidogrel and PPIs, especially 600 

omeprazole, reduces the antiplatelet effect of clopidogrel, the mechanism behind this interaction and the 601 

clinical importance (cardiovascular risk) has not yet been clearly established.[150–155]  602 
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2.4.2 H2 receptor antagonists  603 

The H2RAs are another drug class used to treat gastric acid related disorders. These compounds bind to 604 

histamine H2 receptors on parietal cells and antagonize the action of histamine, which is the major 605 

transmitter for stimulation of acid secretion.[156] As with the PPIs, there are DDIs with different classes of 606 

drugs and these are mainly attributed to the elevation of the gastric pH (see Figure 5). For example, 607 

ketoconazole and itraconazole demonstrate impaired drug absorption when they are concomitantly used 608 

with H2RAs as well as with PPIs. Piscitelli et al., 1991, investigated the effect of 150 mg orally administered 609 

ranitidine on 400 mg oral ketoconazole in six healthy volunteers. The decreased Cmax and AUC and 610 

bioavailability of ketoconazole in this study was attributed to the elevated gastric pH, which resulted in a 611 

decreased and incomplete ketoconazole dissolution.[157] The results were similar when the effect of 612 

cimetidine on the absorption and pharmacokinetics of ketoconazole was investigated.[122] Lim et al., 2007, 613 

investigated the effect of famotidine on the absorption of fluconazole and itraconazole. Twenty healthy 614 

volunteers received orally 40 mg famotidine with 200 mg itraconazole or 100 mg fluconazole. Co-615 

administration of famotidine resulted in a 52.9% decrease in Cmax and a 51.1% decrease in the AUC of 616 

itraconazole, but no difference was observed in the pharmacokinetics of fluconazole.[158] This different 617 

behavior of fluconazole had previously been observed by Blum et al., 1991 and can be explained by its 618 

much higher solubility (see 2.4.1).[159]  619 

The situation is similar with anti-retroviral medications.[160] Analogous to the PPIs/saquinavir interaction, 620 

co-administration of cimetidine resulted in increased exposure to saquinavir. [137,161]  621 

Russell et al., investigated the effect of a single dose of 40 mg of famotidine on the pharmacokinetics of 622 

the weak base dipyridamole in eleven elderly adults with normal gastric acid secretion. After co-623 

administration of famotidine, the Cmax and absorption constant (ka) of dipyridamole decreased 624 

significantly. The total AUC decreased by 37%, but this decrease was not found to be statistically 625 

significant. The authors attributed the observed differences to slower dissolution rate of dipyridamole 626 

tablets at elevated gastric pH.[162] In other studies, co-administration of ranitidine with two weak bases, 627 
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enoxacin and cefpodoxime, resulted in decreased bioavailability, which was again attributed to decreased 628 

solubility in the gastric environment at elevated pH.[163,164] 629 

As with the PPIs, DDIs with H2RAs can occur not only because of their elevation of gastric pH, but can also 630 

arise from their other properties. In particular, it has been shown that, among the various H2RAs, 631 

cimetidine is the most potent inhibitor of the CYP450 enzymes. The inhibition is attributable to the 632 

imidazole ring in its structure, and results in changes in the metabolism of various co-administered 633 

drugs.[165] In cases where a clinical significant interaction is suspected, other H2RAs (e.g. ranitidine, 634 

famotidine) are preferred over cimetidine.[166,167] Among the various metabolic interactions that have been 635 

reported after co-administration of cimetidine,[165] the metabolic interactions observed with warfarin and 636 

propranolol have been most intensively studied and the clinical significance of these interactions has also 637 

been evaluated. Toon et al., investigated the effect of a nine-day short treatment of cimetidine and 638 

ranitidine (800 mg oral dose daily and 300 mg oral dose daily respectively) on the pharmacokinetics of 25 639 

mg of racemic warfarin, administered orally starting on the fourth day of cimetidine treatment and 640 

continuing for the next five days, in nine healthy volunteers.[168] The prothrombin time and Factor VII 641 

clotting time were also evaluated. Whilst ranitidine had no effect on the pharmacokinetics of either of the 642 

two enantiomers of warfarin, cimetidine significantly increased the elimination half-life and decreased the 643 

clearance of the (R)-enantiomer of warfarin. In contrast, the pharmacokinetics of the (S)-enantiomer of 644 

warfarin were not affected by co-administration of cimetidine. Nonetheless, co-administration of either 645 

ranitidine or cimetidine did not result in a clinically significant difference in terms of the anti-coagulation 646 

effect of warfarin.[168] These results were further confirmed by a later study from Niopas et al.[169] It should 647 

be noted however, that both studies were conducted in healthy volunteers and therefore, the clinical 648 

effects on patient populations could differ.  649 

The effect of a daily oral dose of 1000 mg cimetidine on the steady state plasma levels of propranolol, 650 

administered as a 160 mg sustained-release formulation daily, was evaluated in seven healthy volunteers 651 

during a thirteen-day treatment (administration of cimetidine started on the eighth day).[170] It was 652 
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concluded that co-administration of cimetidine resulted in decreased clearance of propranolol and thus 653 

increased propranolol plasma levels at steady state. In a similar study, Reimann et al. investigated the 654 

effect of cimetidine (1000 mg daily, one day oral pretreatment) and ranitidine (300 mg daily oral dose, one 655 

and six days pretreatment) on the steady state propranolol plasma levels (160 mg sustained-release 656 

capsule, once daily) of five healthy volunteers.[171] It was shown that one-day pretreatment with cimetidine 657 

resulted in elevated propranolol plasma levels at steady state, while ranitidine pretreatment for one or six 658 

days did not affect significantly the propranolol plasma levels at steady state. However, the authors stated 659 

that the elevated plasma levels of propranolol observed after pretreatment with cimetidine did not lead 660 

to a clinically significant effect.[171] Again, the study was conducted in healthy volunteers and the clinical 661 

effects on patient populations could differ. Nonetheless, it should be noted that the companies are 662 

required by the regulatory authorities to inform the patients that there is a potentially clinically significant 663 

DDI of cimetidine and propranolol in the patient information leaflets.[172] 664 

It is obvious that there are many interactions of PPIs and H2RAs with other concomitantly used drugs, 665 

especially poorly soluble weak bases, and that their use should be monitored, particularly in cases where 666 

the DDI is well established. Besides the elevation of gastric pH and the interactions with metabolic 667 

pathways, it should be noted that PPIs and H2RAs can also affect other aspects of the physiology in the 668 

gastrointestinal tract. Recent data in literature suggest that administration of PPIs or H2RAs can be 669 

accompanied by reduced buffer capacity, chloride ion concentration, osmolality and surface tension in 670 

stomach and an increase in the pH of the upper small intestine of up to 0.7 units, an increase that would 671 

be especially relevant for compounds (basic or acidic) with pKas between 6 and 7.[119] Carefully designed 672 

DDI studies, in terms of dosing and duration of treatment, are needed in order to accurately determine 673 

the effect of H2RAs or PPIs on the pharmacokinetics of co-administered drugs and investigate the clinical 674 

consequences of these interactions.  675 
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2.4.3 Antacids  676 

The term “antacids” describe a category of salts, formulated as the combination of polyvalent cations such 677 

as calcium, aluminium, or magnesium with a base, such as hydroxide, trisilicate or carbonate. Aluminium 678 

hydroxide alone, or in combination with magnesium hydroxide, is the main ingredient of many antacid 679 

products. Since the appearance of the PPIs and H2RAs, which are more potent drugs and can be used for 680 

a wide variety of gastrointestinal disorders, antacids have been mainly marketed as OTC medications. 681 

However, the concomitant use of antacids with other drugs can significantly affect their absorption or 682 

even their therapeutic effect. Considering the fact that the use of OTC antacids is widespread, there is a 683 

particular need for appropriate information for patients, doctors and pharmacists. Besides interactions 684 

associated with increased pH, the major DDIs with antacids involve chelation reactions. Various categories 685 

of drugs, such as quercetin, catechol derivatives and tetracyclines, are known to form drug/metal 686 

chelates.[173–175] Fluoroquinolones also interact with multivalent cations and this interaction can lead to 687 

reduced antimicrobial activity.[176] 688 

Deppermann et al., 1989, and Garty et al., 1980, investigated the effect of H2RAs or antacids (mixture of 689 

aluminium hydroxide and magnesium hydroxide) on the oral absorption of various tetracycline antibiotics. 690 

The antacids resulted in reduction of the oral bioavailability of tetracyclines by 80% or more, whereas co-691 

administration of the H2RAs did not affect the pharmacokinetic parameters of tetracyclines.[177,178] For this 692 

reason, it was concluded that chelation rather than elevation of gastric pH is the probable mechanism of 693 

this DDI. The complexes that are formed by chelation are insoluble and therefore they precipitate, 694 

preventing absorption. The results are similar with co-administration of antacids and fluoroquinolones. 695 

Aluminium ions form a stable and insoluble complex with quinolones, thus preventing their intestinal 696 

absorption and reducing their bioavailability.[179,180] By contrast, concomitant administration of an H2RA 697 

did not have a significant effect on the AUC of ciprofloxacin.[177] Since the formation of the chelate complex 698 

is the limiting factor to absorption of quinolone antibiotics, many studies have been conducted in order to 699 
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establish an optimal interval of antacid dosing before or after the administration of the antimicrobial 700 

agents. With regard to fluoroquinolones, it has been concluded that administration of antacids four hours 701 

earlier or two hours later than the administration of the antibiotic, would circumvent the interaction.[181–702 

185]  703 

As with the PPIs and H2RAs, the elevation of gastric pH that is observed after administration of antacids 704 

could also impact the dissolution or oral solid formulations and change their pharmacokinetics. Indeed, 705 

co-administration of itraconazole with antacids resulted in decreased AUC.[186] However, in a pilot study 706 

by Brass et al. (n=4) the absorption of ketoconazole was not significantly decreased. [187]  707 

The interaction of antacids and NSAIDs is also an interesting case. NSAIDs are among the most popular 708 

OTC and frequently prescribed medications for acute or short-term pain and chronic inflammatory 709 

diseases. Since NSAIDs cause dyspepsia and damage in the upper gastrointestinal mucosa they are often 710 

given with antacids. Interactions of antacids with NSAIDs are not clearly established and no general 711 

recommendations can be made for this drug category. However, there are studies indicating that co-712 

administration with antacids containing magnesium hydroxide or sodium bicarbonate could enhance the 713 

rate and possibly the extent of absorption of some NSAIDs, i.e. ibuprofen, tolfenamic and mefenamic acid, 714 

diflunisal and naproxen.[188–191] This has been attributed to the fact that magnesium hydroxide, in addition 715 

to increasing gastric pH, also accelerates gastric emptying. Such effects have not been observed for 716 

aluminium hydroxide, which in contrast to magnesium hydroxide prolongs gastric emptying[192]  717 

There have been many further studies investigating the interactions of antacids with APIs from various 718 

drug classes, including corticosteroids, cardiovascular agents and antidiabetic agents. However, it has not 719 

been possible to make any generalizations about the observed interactions. Furthermore, in some cases 720 

there is no evidence that differences in pharmacokinetic parameters translate into clinically significant 721 

differences.[192]  722 
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2.5 Probiotics 723 

It is well known that the intestinal microflora plays a key role in physiological, metabolic, immunological 724 

and nutritional processes in the human body. For this reason, there is currently great interest in influencing 725 

the composition of the microflora and its activity using probiotics for both the prevention and treatment 726 

of various diseases.[193] According to WHO, probiotics are “live microorganisms which, when administered 727 

in adequate amounts, confer a health benefit on the host”.[194] There are several clinical studies that have 728 

illustrated their beneficial effects on gastrointestinal disorders such as diarrhea and irritable bowel 729 

syndrome. The gram-negative bacterium Escherichia coli Nissle 1917, for example, has been used since 730 

1920 for the treatment or prevention of irritable bowel syndrome, chronic constipation, non-ulcer 731 

dyspepsia and other gastrointestinal disorders.[195] The mechanism of action of the probiotics is not yet 732 

fully understood. It seems that they may modulate the intestinal epithelial barrier and transport across it, 733 

noting that in inflammatory bowel diseases, e.g. ulcerative colitis and Crohn’s disease, the barrier 734 

properties of the epithelium are compromised due to secreted cytokines and/or medication.[196]  735 

Despite the wealth of evidence regarding their advantageous and well-tolerated use, the literature on 736 

interactions between concomitantly administered probiotics and drugs with respect to drug 737 

pharmacokinetics is mainly limited to animal experiments. In the study of Mikov et al., 2006, the effect of 738 

co-administration of probiotics (oral 2 g dose of freeze dried powder of a mixture of the strains 739 

Lactobacillus acidophilus L10, Bifidobacterium lactis B94 and Streptococcus salivarius K12 every 12 h for 740 

three days) on sulfasalazine metabolism (sulfasalazine administered as an oral dose of 100 mg/kg dissolved 741 

in saline via gavage 6 h after completing the three day treatment with probiotics) in the rat gut lumen was 742 

investigated. The authors showed that administration of probiotics significantly increased the conversion 743 

of sulfasalazine to sulfapyridine and 5-aminosalicylic acid by increasing azoreductase activity. This could 744 

possibly enhance sulfasalazine therapy, which would be important in patients with reduced gut microflora, 745 

subsequent to antibiotic therapy, or in severe diarrhea.[197] Lee et al., 2012, confirmed an increase of 746 
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azoreductase activity in ex vivo colon rat fluids. However, no differences were found in the 747 

pharmacokinetic parameters of sulfasalazine and sulfapyridine.[198] Kunes et al., 2011, investigated the 748 

effect of E. coli Nissle 1917 probiotic medication on the absorption kinetics of 5-aminosalicylic acid in rats. 749 

The results showed that there was no difference in the pharmacokinetics of 5-aminosalicylic acid and that 750 

E. coli Nissle 1917 medication did not affect the absorption of 5-aminosalicylic acid.[199] Al Salami et al., 751 

2008, investigated the effect of a mixture of three probiotics in diabetic rats on gliclazide 752 

pharmacokinetics. They observed that gliclazide’s absorption and bioavailability were reduced in healthy 753 

rats. The authors attributed this change to several possible causes, most of which had to do with intestinal 754 

efflux drug transporters.[200] Saksena et al., 2011, reported that Lactobacilli or their soluble factors 755 

significantly enhanced P-gp expression and function under normal and inflammatory conditions in 756 

mice.[201] Finally, Matuskova et al., 2014, investigated the effect of administration of E. coli Nissle 1917 on 757 

amiodarone absorption in rats. This resulted in 43% increase in the AUC of amiodarone. Interestingly, this 758 

effect was not observed when E. coli Nissle 1917 was replaced by a reference non-probiotic E. coli strain 759 

suggesting that the increase in AUC of amiodarone was due to the administration of the probiotic.[202]  760 

Clearly, studies in humans are needed in order to investigate whether these results can be extrapolated 761 

well to patients with altered intestinal microflora.  762 

2.6 Antibiotics used for gastrointestinal infections  763 

Antibiotics aim to attack targets specific to bacterial organisms such as bacterial cell walls, bacterial cell 764 

membranes, bacterial metabolism or replication, in order to avoid damage to human cells. However, 765 

antibiotics are not 100% selective for bacteria that are pathogenic for the host organism. As a result, the 766 

GI microbiota is frequently disturbed after treatment with antibiotics.[203,204] In fact depending on the 767 

antibiotic, 5-25% of patients treated experience diarrhoea.[205,206]  768 
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 Sullivan et al. reviewed the effect of various antibiotics on the abundance of bacterial types and 769 

species.[204] Differences in the composition of the microbiota could alter the composition of colonic fluids 770 

and permeability of the gut wall as well as the abundance of bacterial enzymes.  771 

Colonic bacteria are involved in the cleavage of dietary fibres to oligosaccharides and monosaccharides 772 

and their further fermentation to short chain fatty acids (SCFAs) such as acetate, propionate and 773 

butyrate.[207] Patients treated with antibiotics showed a decreased colonic carbohydrate fermentation and 774 

consequently lower fecal concentrations of SCFAs.[208–212] In other studies it was shown that SCFAs 775 

stimulate ileal and colonic motility.[213–215]  The inhibition of gastric emptying by nutrients that reach the 776 

ileo-colonic junction, the so-called “ileocolonic brake”, is also associated with SCFAs.[216] But GI transit 777 

times can also be affected by certain antibiotics through other mechanisms: for example, erythromycin 778 

accelerates gastric emptying (-25% to -77%) by acting as a motilin agonist, while prolonging small intestinal 779 

transit time (+20% to +45%) for liquids and solids in healthy volunteers and patients.[217–222] For example, 780 

when erythromycin was co-administered with a controlled-release formulation of pregabalin, designed to 781 

remain for a prolonged time in the stomach, in eighteen healthy subjects there was a reduction of AUC 782 

and Cmax by 17% and 13% respectively, due to erythromycin’s prokinetic action.[223] Since the pregabalin 783 

exposure was still in the range calculated for patients receiving an immediate release formulation of 784 

pregabalin, the interaction was deemed not to be clinically relevant.  785 

If bacterial enzymes are involved in the biotransformation of a drug, the intake of antibiotics can affect its 786 

metabolism by changing the composition of the microbiota and thus altering the bacterial enzyme 787 

activity.[224,225] At least thirty commercially available drugs have been reported to be metabolised by 788 

bacterial enzymes in the gastrointestinal tract.[224] The serum concentrations of digoxin, which is partly 789 

metabolised by gut microbiota, increased two-fold after administration of erythromycin or tetracycline for 790 

five days in four healthy volunteers.[226] In another report, toxic digoxin plasma levels were observed in a 791 

patient after co-treatment with erythromycin, possibly due to the inhibition of Eubacterium lentum which 792 

converts digoxin to its reduced derivatives.[227] Incubation of flucytosine with fecal specimens of 793 
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neutropenic patients before and after treatment with antibiotics (ciprofloxacin, penicillin, co-trimoxazole) 794 

and antimycotics (amphotericin B, fluconazole, nystatin) indicated that the transformation of flucytosine 795 

to its active metabolite, fluorouracil, was reduced.[228] Similarly, concomitant administration with 796 

ampicillin (250 mg four times daily for five days) with sulfasalazine (single dose 2 g) led to a decrease in 797 

the AUC of sulfapyridine by 35% in five healthy subjects suggesting a decrease in azoreductase activity and 798 

prodrug activation.[229]  799 

An altered colonic microflora could also adversely affect the drug release from colon-targeting 800 

formulations coated with water-insoluble polysaccharides.[230] Since polysaccharides such as guar gum, 801 

pectin and chitosan are degraded by bacterial enzymes in the colon, release of the drug relies on the 802 

abundance and activity of the polysaccharide-specific bacterial enzymes. Samples (fecal slurries) from 803 

volunteers treated with antibiotics within the last three months should be excluded from the evaluation 804 

of such formulations in in vitro dissolution tests.[230]  805 

The microbiota is also involved in the modification of primary bile acids to secondary bile acids, such as 806 

deoxycholic acid and lithocholic acid, via microbial 7α-dehydroxylase and in the deconjugation of 807 

conjugated bile acids.[231] Unconjugated bile acids are less likely to be reabsorbed in the terminal ileum 808 

and therefore, bacterial action promotes the excretion of bile acids.[232] Thus, antibiotic treatment may 809 

cause changes in the bile acid pool. Indeed, treatment with oral vancomycin decreased fecal levels of 810 

secondary bile acids and increased fecal levels of primary bile acids in healthy volunteers (n=10). By 811 

contrast, treatment with oral amoxicillin showed no such effect.[233] It has also been hypothesized that 812 

antibiotic-induced differences in the bile acid composition could affect the solubilisation of lipophilic 813 

drugs. However, a recent study evaluating the differences in the solubilisation capacity of primary and 814 

secondary bile acids for nine poorly water-soluble drugs revealed at most minor differences between 815 

conjugated and unconjugated bile acids. Only dehydroxylation at C-7 improved drug solubilisation 816 

significantly for the compounds investigated.[234]  817 
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With regard to DDIs at the level of metabolism, the effect of antibiotics on metabolic enzymes is often 818 

specific to the antibiotic agent. Macrolide antibiotics interact with substrates metabolized by CYP3A4 (i.e. 819 

carbamazepine, terfenadine, cyclosporine) depending on the macrolide’s specific affinity for CYP3A4. The 820 

interaction potential can be high (troleandomycin, erythromycin), moderate (clarithromycin, 821 

roxithromycin) or low (azithromycin).[235] For example, concomitant administration of erythromycin (500 822 

mg three times daily for seven days) with midazolam (single dose 15 mg) resulted in a 4-fold increase of 823 

the AUC of midazolam in fifteen healthy subjects.[236] Similarly, when administered with clarithromycin 824 

(500 mg twice daily for 7 days), the bioavailability of midazolam (single dose 4 mg) was increased 2.4-fold 825 

in sixteen healthy subjects.[237] But, after pretreatment with azathioprine (500 mg daily for three days), no 826 

significant effect on the pharmacokinetics of midazolam (single dose 15 mg) was observed in twelve 827 

healthy subjects.[238]  828 

For the fluoroquinolones, depending on the fluoroquinolone’s specific affinity for CYP1A2, interactions 829 

with CYP1A2 substrates (i.e. clozapine, theophylline) have been observed.[239] Concomitant oral 830 

administration of enoxacin (400 mg twice daily for six days) with theophylline (250 mg twice daily for 831 

eleven days) resulted in a reduction in total clearance of theophylline by 74% in six healthy subjects,[240] 832 

while ciprofloxacin (500 mg twice daily for two and a half days) reduced theophylline’s total clearance by 833 

19% after a single oral dose of theophylline syrup (3.4 mg/kg) in nine healthy subjects.[241] In contrast, 834 

concomitant administration of norfloxacin (400 mg twice daily for four days) with theophylline (200 mg 835 

three times daily for four days) had no significant effect on theophylline’s total clearance in ten healthy 836 

subjects.[242] For more detailed information, the reader is referred to several review articles.[235,239,243]  837 

2.7 Anti-inflammatory drugs for IBD 838 

Anti-inflammatory agents, such as aminosalicylates and corticosteroids, are the most commonly used 839 

drugs in inflammatory bowel disease (IBD). Treatment with aminosalicylates includes a range of prodrugs 840 

(sulfasalazine, olsalazine, balsalazine) or modified release formulations to deliver aminosalicylates to their 841 
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target site in the intestine. If remission cannot be achieved with aminosalicylates, the next treatment 842 

option consists of different corticosteroids ranging from locally acting drugs (budesonide) to systemic 843 

acting ones (hydrocortisone, prednisolone, dexamethasone).  844 

Aminosalicylates have shown to alter the GI physiology. In terms of GI transit time, olsalazine accelerated 845 

transit, with a mean gastric emptying time of 45.3±24.2 min vs. 67.3±33.1 min, a mouth to caecum transit 846 

time of 242±41 min  vs. 325±33 min and whole gut transit time of 37.8±17.8 h  vs. 60.5±26 h in six patients 847 

with ulcerative colitis whereas intake of sulfasalazine had no effect in six healthy subjects (measured by 848 

scintigraphy of a solid radio-labelled meal or hydrogen breath test).[244–246] The authors commented that 849 

this may be the result of a direct action of olsalazine on contractile activity in the small intestine, inducing 850 

hypersecretion or decreasing fluid absorption.[245]  851 

With respect to luminal pH, treatment with sulfasalazine in patients with ulcerative colitis in remission 852 

resulted in a decrease in colonic pH to 4.90±1.3 compared to treatment with Asacol® (mesalazine) with a 853 

colonic pH of 5.52 ±1.13 or Dipentum® (olsalazine) with a pH of 5.51±0.37.[247] Nugent et al. postulated 854 

that reduced colonic pH may impair drug release from delayed-release formulations targeting the terminal 855 

ileum/colon (trigger pH for release is >6-7) or alter bacterial enzyme activity.[248] 856 

Regarding permeability, jejunal perfusion studies showed a decreased absorption of water, sodium, 857 

potassium and chloride in the presence of olsalazine or sulfasalazine.[249] In ileal perfusion studies, reduced 858 

absorption of water and glucose was observed, when olsalazine was present, which in turn   could explain 859 

the higher volume of ileostomy fluid observed after oral administration of this drug.[249,250] By contrast, no 860 

changes in absorption or volume of fluids was observed in ileal perfusion studies in the presence of 861 

sulfasalazine.[249] With regard to specific uptake mechanisms, sulfasalazine reduced the uptake of folic acid 862 

and methotrexate by folate transporters in biopsy specimens taken from the duodenojejunal region while 863 

olsalazine only decreased folic acid uptake.[251] In an intervention study, sulfasalazine treatment was 864 

discontinued in rheumatoid arthritis patients who had previously received a combination of sulfasalazine 865 

and methotrexate. The intervention resulted in a more than 2-fold increase of methotrexate serum 866 
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concentrations, in line with the ability of sulfasalazine to compete with methotrexate for the folic acid 867 

transporter.[252] 868 

After treatment with sulfasalazine the fecal microbiota of patients with rheumatoid arthritis was richer in 869 

Bacillus, whereas decreased numbers of aerobic bacteria, Escherichia coli, Clostridium perfringens and 870 

Bacteroides were observed.[253–255] Treatment with mesalazine resulted in a decreased diversity of the 871 

intestinal microbiota and also reduced the quantity of fecal bacteria in patients with diarrhea-predominant 872 

irritable bowel syndrome.[256,257] These changes in colonic bacteria may have ramifications for drugs like 873 

digoxin, which are partly metabolised by bacterial enzymes (see section 2.6 “Antibiotics”).[258–260]  874 

With regard to DDIs, pre-treatment with sulfasalazine (500 mg for six days) in ten healthy subjects 875 

decreased the AUC of digoxin by 25% after being administered as oral solution (dose 0.5 mg).[261] The 876 

mechanism of the interaction is not yet understood. Differences in bioavailability could possibly be 877 

attributed to a direct action of sulfasalazine on the intestinal mucosa or induced differences in the gut 878 

microbiota enhancing digoxin metabolism. For a patient on concomitant treatment with cyclosporin (480 879 

mg daily) and sulfasalazine (1.5 g daily), increased plasma concentrations of cyclosporine were observed 880 

five days after the treatment of sulfasalazine was stopped making it necessary to reduce the dose of 881 

cyclosporine by 60%.[262] While the interaction is not yet understood, an induction of metabolic enzymes 882 

is plausible considering the time course of the observation. For 6-mercaptopurine (50-75 mg), a metabolic 883 

interaction was observed with concomitantly administered olsalazine (1000-1750 mg) in a patient with 884 

Crohn’s disease, resulting in bone marrow suppression and required dose reduction of 6-885 

mercaptopurine.[263] This interaction may be caused by the inhibition of thiopurine methyltransferase, 886 

which is responsible for 6-mercaptopurine metabolism; inhibition of this enzyme by aminosalicylates has 887 

been demonstrated in in vitro enzyme kinetic studies.[264]  888 

After treatment with corticosteroids, the phospholipid mucus layer can be fluidized, resulting in a thinner 889 

mucus barrier.[265] Impairment of membrane integrity can cause side-effects such as gastrointestinal 890 
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bleeding and bowel perforation.[266] The corticosteroids can also affect active transport mechanisms such 891 

as bile salt reuptake and exo-transport. Treatment with budesonide results in upregulation of the apical 892 

sodium-dependent bile acid transporter in the terminal ileum, which enhances bile acid absorption in both 893 

healthy controls and patients with Crohn’s disease.[267,268] Consequently, lower luminal bile salt 894 

concentrations may impede solubilisation and absorption of lipophilic poorly soluble compounds.[269] In 895 

terms of transporters, budesonide and prednisone are substrates of the efflux transporter P-896 

glycoprotein.[270] However, it is unclear whether these alterations result in clinically significant DDIs.  897 

The main elimination pathway of corticosteroids is the metabolism by intestinal and hepatic CYP3A4 which 898 

is especially important for high-clearance corticosteroids such as budesonide and prednisone.[271] Co-899 

administration of prednisone with metronidazole in six patients with Crohn’s disease reduced the 900 

bioavailability of metronidazole by 31%, most likely attributed to the induction of liver enzymes 901 

responsible for metabolizing metronidazole.[272] Likewise, co-treatment with prednisone resulted in 902 

decreased serum concentrations of salicylates in a 11-year-old child with juvenile rheumatoid arthritis due 903 

to the induction of salicylate clearance by prednisone.[273] On the other hand, drugs inhibiting CYP3A4 in 904 

the intestinal wall and liver such as ketoconazole, itraconazole, clarithromycin and HIV-protease inhibitors 905 

reduce the metabolism of corticosteroids and increase their bioavailability.[274–277]  906 

2.8 Immunosuppressive agents for IBD 907 

Immunosuppressive agents are frequently used in gastroenterology for the treatment of inflammatory 908 

bowel disease, autoimmune hepatitis, autoimmune pancreatitis, sclerosing cholangitis and in the post-909 

transplantation setting.[278] Especially in IBD, therapy with immunosuppressive agents has gained in 910 

importance over the last few years.[279] Immunosuppressive agents can be classified in immunomodulators 911 

(e.g., thiopurines (6-mercaptopurine, azathioprine), methotrexate, tacrolimus, sirolimus, everolimus, 912 

cyclosporine A) and biologics (e.g., monoclonal antibodies: infliximab, adalimumab, vedolizumab, 913 

golimumab).[279] Depending on the specific immunosuppressive agent, gastrointestinal transit time, bile 914 
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flow and/or permeability can be altered, which could further affect drug product performance of co-915 

administered drugs.  916 

Regarding transit time, gastric emptying time (as measured with magnetic markers after a standardized 917 

meal using Alternating Current Biosusceptometry) was decreased in patients treated with tacrolimus after 918 

kidney transplant (47±34 min) compared to healthy subjects (176±42 min) or patients treated with 919 

cyclosporine A (195±42 min).[280]  920 

In terms of drug absorption, immunosuppressants can result in increased permeability on the one hand, 921 

but decreased surface area on the other hand. Intestinal permeability was increased (75% of median value; 922 

indicated by an increased lactulose/L-rhamnose excretion ratio) in liver graft recipients treated with 923 

tacrolimus (n=12) compared to healthy subjects (n=9) and by 48% compared to untreated liver transplant 924 

patients (n=5).[281] Only the permeability via the transcellular pathway seems to be increased by 925 

tacrolimus, as indicated by an increased lactulose/L-rhamnose ratio (+160%) and unchanged excretion of 926 

lactulose in treated orthotopic liver transplantation patients.[281,282]  927 

Another side-effect of immunosuppressive therapy, especially with methotrexate (including low-dose 928 

therapy) is GI mucositis resulting in the loss of villi in the duodenum, crypts in the colon and 929 

enterocytes.[283–287] Oral mucositis is a side-effect of azathioprine therapy.[288] In patients with oral 930 

mucositis, bupivacaine absorption from lozenges was increased and a trend to higher fentanyl absorption 931 

administered with a sublingual spray was observed but did not reach statistical significance.[289,290] The 932 

effect may be due to impairment of the barrier function of the mucosa. 933 

In terms of transporter systems and metabolism, immunosuppressants (cyclosporine A, tacrolimus, 934 

everolimus and sirolimus) are substrates of P-glycoprotein and CYP3A4.[291–293] As a result, various drug 935 

interactions with P-gp substrates such as aliskiren and anthracyclines have been reported for cyclosporine 936 

A.[294–296] Additionally, concomitant administration of inhibitors (e.g. azole antifungal drugs, macrolide 937 

antibiotics) and inducers (e.g. anti-convulsants, rifampicin) of CYP3A4 can modify therapeutic response 938 

and toxicity of the abovementioned immunosuppressants.[297–299] Methotrexate intra muscular or 939 
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subcutaneous co-treatment in patients with Crohn’s disease or oral co-treatment in patients with 940 

rheumatoid arthritis resulted in increased infliximab concentrations, most likely due to a decrease in the 941 

development of infliximab antibodies.[300,301] Co-administration of azathioprine in patients treated with 942 

warfarin resulted in higher warfarin doses needed to reach therapeutic anticoagulant effects but the 943 

mechanism of the interaction is unclear.[302–304]  944 

2.9 Bile acid sequestrants 945 

Bile acid sequestrants (BAS) such as cholestyramine, colesevelam and colestipol are used for the treatment 946 

of primary hyperlipidaemia, as monotherapy or in combination with statins or ezetimibe, and in the 947 

treatment of gastrointestinal diseases.[305] Cholestyramine is indicated for diarrhea associated with 948 

Crohn’s disease, ileal resection, vagotomy, diabetes, diabetic vagal neuropathy and radiation.[306] Whilst 949 

colesevelam is not licensed for the treatment of bile acid malabsorption, several clinical trials have 950 

demonstrated positive outcomes which has provoked its off-label use in this indication.[307–309]  951 

Bile acid sequestrants are positively charged ion-exchange resins which bind bile acids in the intestine to 952 

form insoluble complexes and as a consequence reduce the bile acid pool.[306] As a result of decreased 953 

luminal bile acid concentrations, BAS are expected to interfere with the bioavailability of lipophilic, low-954 

soluble compounds by impeding their solubilization. For several drugs, such as rifaximin[310] and 955 

troglitazone[311] the presence of bile acids was shown to increase drug solubility and therefore, their 956 

absorption may be impeded by co-therapy with BAS.  957 

The positive charge of BAS leads to a high affinity for deprotonated acidic drugs in the intestine. Binding 958 

of these anions increases the excretion and impedes the absorption of acidic co-administered drugs. Drugs 959 

that are known to be affected by this mechanism are furosemide,[312] warfarin,[313] phenprocoumon,[314,315] 960 

sulindac,[316] cerivastatin,[317] levothyroxine,[318] glipizide,[319] mycophenolic acid,[320] folic acid[321] and 961 

valproate[322]. The binding affinity for co-administered drugs can vary among the different BAS e.g., 962 

cholestyramine, which has a high affinity for hydrophobic compounds,[305,323] decreased ibuprofen and 963 
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diclofenac absorption to a higher extent than colestipol; and colesevelam has a favorable DDI-profile 964 

compared to other BAS.[324–326]  965 

High-molecular lipophilic drugs are typical substrates for enterohepatic recirculation.[327] By binding drugs 966 

or drug metabolites that undergo enterohepatic recirculation, BAS can enhance drug elimination of the 967 

victim drug even if the administration was not concomitant. Drugs affected by this mechanism include oral 968 

anticoagulants,[313–315] cardiac glycosides[328] and mycophenolate mofetil[320]. It is difficult to predict which 969 

drugs that undergo enterohepatic recirculation will be affected by BAS, since various factors such as 970 

polarity, ionization properties and metabolism by liver and microbiota all influence biliary excretion.[329] 971 

Prolonging the interval between administration of BAS and co-medication often reduces the potential for 972 

drug interactions and must be adapted for extended-release formulations. 973 

BAS can also affect gastrointestinal transit time: Cholestyramine prolonged the transit time in the 974 

transverse colon by up to eight hours in thirteen patients with idiopathic bile acid diarrhea (as measured 975 

with radiopaque markers), while total colonic transit was not altered.[330] After concomitant administration 976 

of a sustained-release formulation of verapamil (dose 240 mg) with colesevelam (dose 4.5 g), a reduction 977 

in AUC of 11% and decreased plasma levels of verapamil were observed in thirty-one healthy subjects.[331] 978 

This interaction was deemed not to be clinically relevant.[331]  979 

An overview of DDIs of bile acid sequestrants and their mechanism is given in Table 4.  980 
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3. Conclusions and future perspectives 981 

Gastrointestinal events and conditions play a key role in the bioavailability of an orally administered drug 982 

and its therapeutic action. Concomitant use of various medications can affect the absorption and the 983 

pharmacokinetics of the administered drugs and therefore, their performance. As presented in this review 984 

article, various interactions between drugs used to treat gastrointestinal diseases and co-administered 985 

drugs have been identified. These interactions are of particular concern, since GI drugs are commonly 986 

prescribed and many of them are also available OTC. Prescribing physicians and pharmacists need to be 987 

aware of and monitor these potential interactions. Furthermore, information involving interactions with 988 

GI drugs should be made available not only to clinical practitioners, but also to patients, in order to prevent 989 

the appearance of adverse effects, on the one hand, and failure of treatment on the other hand.  990 

It should be noted, however, that despite the large number of DDI studies with GI drugs reported in 991 

literature, most studies have only investigated the effects of short-term treatment and little is known 992 

about the ramifications of long-term administration on DDIs. Furthermore, most DDI studies have been 993 

conducted in healthy volunteers and may not necessarily reflect the degree of interaction in patients. As 994 

most of the DDIs have been based on changes in pharmacokinetics, it is also not clear in all cases whether 995 

the DDI has any ramifications for the therapeutic effect. Indeed, some studies have suggested that even 996 

quite significant changes in pharmacokinetics do not always lead to a change in the clinical response. More 997 

work on pharmacokinetics/pharmacodynamics (PK/PD) relationships and the influence of DDIs on them 998 

will be necessary to tease out the clinical implications of DDIs. 999 

However, the number of studies that can be conducted to test for potentially clinically relevant DDIs is 1000 

limited, due to both ethical and cost-related issues. So there is a need for innovative evaluation methods 1001 

to address knowledge gaps and provide key information on safe and effective drug use.[332] In the last ten 1002 

years, there has been an increasing use of Physiologically Based Pharmacokinetic (PBPK) modelling and 1003 

simulation at different stages of drug development.[333] To date, PBPK modelling and simulation has been 1004 
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mostly used for predicting enzyme interactions which, as mentioned in this article, can also occur with 1005 

concomitant administration of GI drugs.[334–339] PBPK modelling is gaining acceptance at the various 1006 

regulatory agencies as a tool to qualitatively and quantitatively predict DDIs and, in some cases, the 1007 

simulation results may even be used to support labeling, depending on the clinical importance of the 1008 

interaction.[8]  1009 

One of the advantages of PBPK modelling is that it is able to account for both formulation characteristics 1010 

and physiological parameters. As such, it can be used to help define a “safe space” by identifying the range 1011 

of dosing conditions under which the pharmacokinetic parameters will not be significantly affected by 1012 

changes in the release properties of the dosage form. This approach, which is sometimes referred to as 1013 

“virtual bioequivalence”, has already been used to explore whether bioequivalence decisions based on 1014 

clinical trials in healthy adults can be extrapolated to special populations, such as the hypochlorhydric or 1015 

achlorhydric population, in whom the gastrointestinal physiology differs from that of healthy adults.[340–1016 

342] 1017 

The same approach could be extended to predict pre-absorptive DDIs with GI drugs, since these are 1018 

intended to modify gastrointestinal physiology. First attempts have already been made for acid reducing 1019 

agents, with results from in vitro dissolution experiments , which are tailored to mimic the changes in the 1020 

upper gastrointestinal tract after the administration of these drugs, combined with PBPK models for 1021 

healthy adults.[340,341,343] This approach should be broadened to encompass other classes of GI drugs. 1022 

Possible future steps include tailoring dissolution tests and PBPK models to the physiological conditions 1023 

observed in special populations, thus allowing for predictions of the in vivo performance of drug products 1024 

in special populations (pediatrics, geriatrics, ethnic groups, the obese, hepatically impaired etc.) who 1025 

concomitantly receive GI drugs. This approach will provide the way forward to predicting pharmacokinetic 1026 

differences resulting from these combinations and, especially when coupled with PK/PD relationships, 1027 

whether these are likely to be clinically significant, in a wide variety of populations and dosing conditions. 1028 
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Tables 1990 

Table 1: Reported Pharmacokinetic Interactions with Metoclopramide 1991 

 

Interaction 

with: 

Effect 
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Acetaminophen ↑ ↑ ↓  
Nimmo et 

al., 1973[30] 

Cimetidine 

 ↓  ↓ 
Gugler et al., 

1981[36] 

 ↓   
Lee et al., 

2000[344] 

Cyclosporine  ↑ ↓ ↑ 
Wadhwa et 

al., 1986[42] 

Digoxin 

  ↓ 
↓  

(only for tablet)  

Johnson et 

al., 1984[41] 

 ↓   
Manninen et 

al., 1973[40] 

Droxicam   ↓  
Sánchez et 

al., 1989[33] 

Levodopa ↑ ↑ ↓  
Morris et al., 

1976[35] 

Lithium   ↓  
Crammer et 

al., 1974[32] 
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Methotrexate    
↓ 

(pediatrics) 

Mahony et 

al., 1984[37] 

Mexiletine 
↑    Wing et al., 

1980[31] 

Morphine 
  ↓  Manara et 

al., 1988[34] 

Salicylic acid 

 ↑ plasma levels  

(in patients with 

migraine 

attacks) 

  

Volans et al., 

1975[28] 

Tetracycline 
  ↓  Gothoni et 

al., 1972[29] 

Tolfenamic acid 
↑    Tokola et al., 

1984[27] 

 1992 

Table 2: Classification of laxatives and antidiarrheal agents [43–45] 1993 

 Class Subgroup Examples 

Laxatives Osmotic laxatives 

Indigestible 

disaccharides 
Lactulose 

Sugar alcohols Sorbitol 

Synthetic 

macromolecules 
Polyethylene glycol 4000 

Saline laxatives 
Sodium sulphate 

Magnesium sulphate 
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Stimulant laxatives  

Bisacodyl 

Senna 

Phenolphthalein 

Casanthranol 

Sodium picosulfate 

Bulk laxatives  

Wheat bran 

Isphagula 

Sterculia 

Others  Linaclotide 

Antidiarrheal agents 

Opioids  

Loperamide 

Diphenoxylate 

Codeine phosphate 

Adsorbents/Bulking 

agents 
 

Kaolin 

Isphagula 

Methylcellulose 

Miscellaneous  Racecadotril 

 1994 

Table 3: Effects of laxatives and antidiarrheal agents on gastrointestinal conditions[45,46,49,51–54,58–60,65,345,346] 1995 

Drug category Implication on gastrointestinal conditions 

Laxatives 
↓Gastrointestinal 

transit time 

Small intestinal transit time (bisacodyl) 

Colonic transit time (bisacodyl, linaclotide, lactulose, 

polyethylene glycol) 



94 
 

Whole gastrointestinal transit time (wheat bran, 

senna, bisacodyl) 

pH in the colon 
↓ pH (lactulose, senna, wheat bran, sodium sulphate) 

↑ pH (magnesium sulphate) 

Fecal short chain 

fatty acids 
↑ (bisacodyl, senna, wheat bran) 

Differences in gut 

microbiota 

↑ Anaerobes, Bifidobacteria (lactulose) 

↓ Bifidobacteria (polyethylene glycol-4000) 

Haustra (small 

pouches in the colon) 
↓ (chronic use of stimulant laxatives) 

Antidiarrheal agents 

↑ Gastrointestinal 

transit time 
↑ intestinal transit time (loperamide) 

Fecal short chain 

fatty acids 
↑ (loperamide) 

 1996 

Table 4: Drug-Drug Interactions with concomitant administration of bile acid sequestrants 1997 

Implication on 

gastrointestinal conditions 

Associated risk for co-

medication 
Reported interactions 

Binding of weakly acidic drugs 
↓Bioavailability of co-

administered drug 

Furosemide[312] warfarin,[313] 

phenprocoumon,[314,315] 

sulindac,[316] cerivastatin,[317] 

levothyroxine,[318] glipizide,[319] 

mycophenolic acid,[320] folic 

acid,[321] valproate[322] 
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Disruption of enterohepatic 

recirculation of drugs 

↑ Excretion of co-administered 

drug 

Anticoagulants,[313–315] cardiac 

glycosides,[328] mycophenolate 

mofetil[320] 

Possible impact on 

gastrointestinal transit time  

↓↑Time available at 

gastrointestinal absorption site, 

effect on tmax 

Sustained-release formulation of 

verapamil[331]* 

Reduced concentrations of bile 

acids for drug solubilization 

↓ Absorption of low-soluble 

compounds 
 

*not clinically significant due to high variability in the pharmacokinetics of verapamil   1998 

  1999 
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Figure Captions 2000 

 2001 

Figure 1: Gastrointestinal drugs discussed in this review. 2002 

 2003 

Figure 2: Gastric emptying results in twelve gastroesophageal reflux patients with delayed basal 2004 

emptying rates (A) and in fourteen gastroesophageal reflux patients with normal basal emptying rates 2005 

(B), in a two-way crossover design consisting of a control phase and a phase in which 10 mg 2006 

metoclopramode was ingested orally. The data are expressed as the mean percent (± 1 SEM) isotope 2007 

remaining in the stomach for a period of 90 min after ingestion of an isotope-labeled test meal.[25] Figure 2008 

reprinted from Fink et al. with permission from Springer Nature. 2009 

 2010 

Figure 3: Impact of laxatives on colonic transit times of a) healthy subjects and b) patients, measured by 2011 

scintigraphy (1), metal detector (2) or radiopaque markers method (3); patterned bars represent 2012 

controls.[45,47–49,53,54]  2013 

 2014 

Figure 4: Effect of loperamide on gastrointestinal transit time after oral administration in healthy 2015 

subjects.[46,70–72]  2016 

 2017 

Figure 5: pH in the stomach of fasted healthy adults as a function of time, after administration of 240 mL 2018 

table water into the antrum of the stomach. Key: (From left to right boxes) White boxes, Phase 1 (control 2019 

phase); Light pink boxes, Phase 2 (pantoprazole phase); Dark blue boxes, Phase 3 (famotidine phase). 2020 

Each box was constructed by using 7–8 individual values.[119] 2021 

 2022 
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