2,833 research outputs found
Spin properties of single electron states in coupled quantum dots
Spin properties of single electron states in laterally coupled quantum dots
in the presence of a perpendicular magnetic field are studied by exact
numerical diagonalization. Dresselhaus (linear and cubic) and Bychkov-Rashba
spin-orbit couplings are included in a realistic model of confined dots based
on GaAs. Group theoretical classification of quantum states with and without
spin orbit coupling is provided. Spin-orbit effects on the g-factor are rather
weak. It is shown that the frequency of coherent oscillations (tunneling
amplitude) in coupled dots is largely unaffected by spin-orbit effects due to
symmetry requirements. The leading contributions to the frequency involves the
cubic term of the Dresselhaus coupling. Spin-orbit coupling in the presence of
magnetic field leads to a spin-dependent tunneling amplitude, and thus to the
possibility of spin to charge conversion, namely spatial separation of spin by
coherent oscillations in a uniform magnetic field. It is also shown that spin
hot spots exist in coupled GaAs dots already at moderate magnetic fields, and
that spin hot spots at zero magnetic field are due to the cubic Dresselhaus
term only.Comment: 16 pages, 12 figure
Generation of spin currents and spin densities in systems with reduced symmetry
We show that the spin-current response of a semiconductor crystal to an
external electric field is considerably more complex than previously assumed.
While in systems of high symmetry only the spin-Hall components are allowed, in
systems of lower symmetry other non-spin-Hall components may be present. We
argue that, when spin-orbit interactions are present only in the band
structure, the distinction between intrinsic and extrinsic contributions to the
spin current is not useful. We show that the generation of spin currents and
that of spin densities in an electric field are closely related, and that our
general theory provides a systematic way to distinguish between them in
experiment. We discuss also the meaning of vertex corrections in systems with
spin-orbit interactions.Comment: 4 page
Higher order contributions to Rashba and Dresselhaus effects
We have developed a method to systematically compute the form of Rashba- and
Dresselhaus-like contributions to the spin Hamiltonian of heterostructures to
an arbitrary order in the wavevector k. This is achieved by using the double
group representations to construct general symmetry-allowed Hamiltonians with
full spin-orbit effects within the tight-binding formalism. We have computed
full-zone spin Hamiltonians for [001]-, [110]- and [111]-grown zinc blende
heterostructures (D_{2d},C_{4v},C_{2v},C_{3v} point group symmetries), which
are commonly used in spintronics. After an expansion of the Hamiltonian up to
third order in k, we are able to obtain additional terms not found previously.
The present method also provides the matrix elements for bulk zinc blendes
(T_d) in the anion/cation and effective bond orbital model (EBOM) basis sets
with full spin-orbit effects.Comment: v1: 11 pages, 3 figures, 8 table
Получение вяжущего при смешении золы, серы и битумной эмульсии с перспективой использования его в дорожном строительстве
Symmetry adapted finite-cluster solver for quantum Heisenberg model in two-dimensions: a real-space renormalization approach
We present a quantum cluster solver for spin- Heisenberg model on a
two-dimensional lattice. The formalism is based on the real-space
renormalization procedure and uses the lattice point group-theoretical analysis
and nonabelian SU(2) spin symmetry technique. The exact diagonalization
procedure is used twice at each renormalization group step. The method is
applied to the spin-half antiferromagnet on a square lattice and a calculation
of local observables is demonstrated. A symmetry based truncation procedure is
suggested and verified numerically.Comment: willm appear in J. Phys.
p63 is the molecular switch for initiation of an epithelial stratification program
Development of stratified epithelia, such as the epidermis, requires p63 expression. The p63 gene encodes isoforms that contain (TA) or lack (DeltaN) a transactivation domain. We demonstrate that TAp63 isoforms are the first to be expressed during embryogenesis and are required for initiation of epithelial stratification. In addition, TAp63 isoforms inhibit terminal differentiation, suggesting that TAp63 isoforms must be counterbalanced by DeltaNp63 isoforms to allow cells to respond to signals required for maturation of embryonic epidermis. Our data demonstrate that p63 plays a dual role: initiating epithelial stratification during development and maintaining proliferative potential of basal keratino-cytes in mature epidermis
Generalized "Quasi-classical" Ground State for an Interacting Two Level System
We treat a system (a molecule or a solid) in which electrons are coupled
linearly to any number and type of harmonic oscillators and which is further
subject to external forces of arbitrary symmetry. With the treatment restricted
to the lowest pair of electronic states, approximate "vibronic"
(vibration-electronic) ground state wave functions are constructed having the
form of simple, closed expressions. The basis of the method is to regard
electronic density operators as classical variables. It extends an earlier
"guessed solution", devised for the dynamical Jahn-Teller effect in cubic
symmetry, to situations having lower (e.g., dihedral) symmetry or without any
symmetry at all. While the proposed solution is expected to be quite close to
the exact one, its formal simplicity allows straightforward calculations of
several interesting quantities, like energies and vibronic reduction (or Ham)
factors. We calculate for dihedral symmetry two different -factors (""
and "") and a -factor. In simplified situations we obtain . The formalism enables quantitative estimates to be made for the dynamical
narrowing of hyperfine lines in the observed ESR spectrum of the dihedral
cyclobutane radical cation.Comment: 28 pages, 4 figure
A Microscopic T-Violating Optical Potential: Implications for Neutron-Transmission Experiments
We derive a T-violating P-conserving optical potential for neutron-nucleus
scattering, starting from a uniquely determined two-body -exchange
interaction with the same symmetry. We then obtain limits on the T-violating
-nucleon coupling from neutron-transmission
experiments in Ho. The limits may soon compete with those from
measurements of atomic electric-dipole moments.Comment: 8 pages, 2 uuencoded figures in separate files (replaces version sent
earlier in the day with figures attached), in RevTeX 3, submitted to PR
Local Electronic Structure of Defects in Superconductors
The electronic structure near defects (such as impurities) in superconductors
is explored using a new, fully self-consistent technique. This technique
exploits the short-range nature of the impurity potential and the induced
change in the superconducting order parameter to calculate features in the
electronic structure down to the atomic scale with unprecedented spectral
resolution. Magnetic and non-magnetic static impurity potentials are
considered, as well as local alterations in the pairing interaction. Extensions
to strong-coupling superconductors and superconductors with anisotropic order
parameters are formulated.Comment: RevTex source, 20 pages including 22 figures in text with eps
Quasiparticle transport equation with collision delay. II. Microscopic Theory
For a system of non-interacting electrons scattered by neutral impurities, we
derive a modified Boltzmann equation that includes quasiparticle and virial
corrections. We start from quasiclassical transport equation for
non-equilibrium Green's functions and apply limit of small scattering rates.
Resulting transport equation for quasiparticles has gradient corrections to
scattering integrals. These gradient corrections are rearranged into a form
characteristic for virial corrections
- …
