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Abstract. This paper develops a capacitymodel for sequential zone picking systems. These
systems are popular internal transport and order-picking systems because of their scal-
ability, flexibility, high-throughput ability, and fit for use for a wide range of products and
order profiles. The major disadvantage of such systems is congestion and blocking under
heavy use, leading to long order throughput times. To reduce blocking and congestion,
most systems use the block-and-recirculate protocol to dynamically manage workload.
In this paper, the various elements of the system, such as conveyor lanes and pick zones,
are modeled as a multiclass block-and-recirculate queueing network with capacity con-
straints on subnetworks. Because of this blocking protocol, the stationary distribution of the
queueing network is highly intractable.Wepropose an approximationmethod based on jump-
over blocking. Multiclass jump-over queueing networks admit a product-form stationary
distribution and can be efficiently evaluated by mean value analysis and Norton’s theorem.
This method can be applied during the design phase of sequential zone picking systems to
determine the number of segments, number and length of zones, buffer capacities, and storage
allocation of products to zones tomeet performance targets. For a wide range of parameters,
the results show that the relative error in the system throughput is typically less than 1%
compared with simulation.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2019.1885.

Keywords: warehousing • queueing theory • material handling • logistics

1. Introduction
Order picking, the process of picking products to fill
customer orders, is the most labor-intensive warehouse
activity and accounts for about 55% of warehouse total
operating costs (Drury 1988). E-commerce and other
recent trends in distribution and manufacturing have
increased the importance of efficient order picking
even more (Le-Duc and De Koster 2007). This paper
focuses on the modeling and capacity analysis of
sequential zone picking systems.

Zone picking is one of the most popular picker-to-
parts order-picking method, in which the order-picking
area is zoned. In each zone, an order picker is responsible
for picking from a dedicated part of the warehouse
(Petersen 2002, Gu et al. 2010). In practice, the zones
are often connected by conveyors to reduce travel.
The major advantages of zone picking systems are
high-throughput ability, scalability, and flexibility in
handling both small and large order volumes and fit
for use for different product sizeswith a varying number
of order pickers. These systems are often applied in

warehouses handling customer orders with a large
numberof order lines andwitha largenumberofdifferent
products kept in stock (Park 2012). A disadvantage of
such systems, however, is congestion and blocking
under heavy use, leading to long order through-
put times.
Zone picking systems can be categorized into

parallel and sequential systems (DeKoster et al. 2007).
In parallel zone picking, a customer order consisting
of several order lines is picked simultaneously inmultiple
zones. A downstream sorting process consolidates the
picked order lines into customer orders after the picking
process has been completed. In sequential zone picking
(or pick-and-pass picking), shown in Figure 1, an order
is assigned to an order tote or order carton that travels
on the conveyor. Upon arrival at a zone, the tote enters
the buffer if the zone stores products that should be
added to the order or travels to the next zone. At a zone,
each picker picks for one tote at a time. The advantage
of sequential zone picking is that order integrity is
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maintained, and no sorting and product consolidation
is required (Petersen 2000).

There are two types of sequential zone picking systems:
single-segment routing and multisegment routing. In
single-segment routing, the conveyor forms a circular
loop connecting all zones, whereas in multisegment
routing, zones are grouped in segments, and within
each segment, the zones are connected to a con-
veyor with a recirculation loop. The segments are then
connected by a central (or main) conveyor that diverts
the totes to the required segments (see Figure 1).
Multisegment routing improves the system throughput
significantly because of shorter conveyor loops that
avoid unnecessary tote travel times. However, in-
vestment costs and space requirements are higher
compared with single-segment routing.

De Koster (1994), Yu and De Koster (2008, 2009),
andMelacini et al. (2010)model a zone picking system
as a network of queues. They use Whitt’s queueing
network analyzer (Whitt 1982) to estimate perfor-
mance statistics, such as utilization, throughput rate
of a zone, and mean and standard deviation of the
throughput time of the totes. However, a crucial as-
pect not taken into consideration is blocking. In most
environments, the workload of the zones exhibit
variability because of differences in work profiles
of the orders. In peak periods, zones can become
congested, leading to blockages that can propagate
throughout the network, resulting in starved zones
and increased throughput times. This can affect the
performance of a zone picking system significantly
and should not be ignored. Identifying and quan-
tifying the effect of blocking is crucial in the design
of zone picking systems.

In a zone picking system, congestion occurs in
zones as well as in segments. In both cases, the block-
and-recirculate protocol is used to dynamically manage

workload: a tote is blocked and recirculated on the
conveyor loop if the destination buffer is full or the
segment is congested. The tote potentially visits other
zones or segments before attempting to reenter the
zone or segment where it was blocked.
Queueing networks with the block-and-recirculate

protocol are highly intractable: no exact results for the
stationary distribution exist. In the literature, block-
ing protocols have been investigated for various ap-
plications (see Schmidt and Jackman (2000), Hsieh
and Bozer (2005), and Osorio and Bierlaire (2009) for
recent references on manufacturing systems with auto-
mated conveyors). For a review on queueing networks
with blocking, the reader is referred to Papadopoulos
et al. (1993), Perros (1994), and Balsamo et al. (2001).
Yao and Buzacott (1987) were the first to study a
variation of the block-and-recirculate protocol for
flexible manufacturing systems. However, this vari-
ation is not applicable in the context of zone picking
systems.
The objective of the paper is to develop a capacity

model for sequential zone picking systems (hereafter
zone picking) with either single-segment or multi-
segment routing, finite buffers, segment capacities,
and the block-and-recirculate protocol. This model
can be used in the design phase of zone picking
systems to study the effects of layout, loading, and
storage on blocking and congestion. It considerably
extends the models of De Koster (1994), Yu and De
Koster (2008, 2009), and Melacini et al. (2010) that
consider zone picking systems with single-segment
routing and no blocking. The capacity model is a
multiclass queueing network with the block-and-
recirculate protocol. Because an exact analysis of
block-and-recirculate queueing networks is not fea-
sible, we develop an approximation by iteratively
estimating the blocking probabilities in a multiclass

Figure 1. (Color online) A Sequential Multisegment Zone Picking System (Vanderlande 2007)
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queueing network with jump-over blocking (Van Dijk
1988, Economou and Fakinos 1998). We show that
jump-over blocking admits a product-form stationary
queue length distribution. Key to the approximation
is to equip the jump-over queueing network with
Markovian routing that reflects the relation to the
block-and-recirculate queueing network; that is, the
flows in both networks should match. It appears that
the approximation is efficient and provides accurate
estimates of key statistics. Hence, it is a powerful tool
to support decisions on the required the number of
segments, number and size of zones, buffer capacities,
or storage allocation of products to zones to meet
performance targets.

This paper is organized as follows: Section 2 pres-
ents the model for single-segment routing zone pick-
ing systems and develops the approximation and anal-
ysis. The model is extended to multisegment routing
zone picking systems in Section 3. In Section 4, we
analyze the results of the approximation for a range
of parameters via computational experiments. In the
final section, we conclude and suggest model ex-
tensions and topics for further research.

2. Single-Segment Zone Picking Systems
A zone picking system with single-segment routing
comprises three parts: the entrance/exit, the conveyors,
and the zones. Figure 2(a) shows a single-segment
zone picking system with two zones.

Order release is regulated by a workload control
mechanism (Park 2012), which sets an upper bound on
the number of totes in the zones and on the conveyor.
When this bound is reached, the controlmechanismonly
releases a new order when a tote with all required order
lines leaves the system. This mechanism prevents the
conveyor from becoming the bottleneck of the system.

Once an order is released, it is assigned to a tote at
the entrance station. The tote then receives its data, for
example, its packing list, and moves to the buffer of a
requested zone and enters if the buffer is not full.
Otherwise, the tote is blocked and stays on the con-
veyor to potentially visit other zones before return-
ing.When the picking process has finished, the picker
pushes the tote back on the conveyor. The waiting
time for an empty space on the conveyor is assumed
to be negligible because of the workload control
mechanism. The conveyor then transports the tote
to the next zone. A weight check at the end of the
conveyor loop ensures that the tote contains all the
required order lines. Otherwise, the tote is sent back
to the beginning of the loop and returns to the zones
where it was blocked previously. When the tote has
visited all the required zones, it exits the system, and a
new tote is immediately released into the system.
Hence, we assume a saturated systemwith an infinite
supply of orders. This is a valid assumption for zone
picking system design, which aims at studying the
throughput capacity of the system. Operational is-
sues, such as the effect of varying order arrival rates
and order waiting times are not in the scope of this
paper, but can be studied within the framework of
semiopen queueing networks.
Tomodel this system,we propose a queueing network,

the topology of which is shown in Figure 2(b) for a
case of two zones. The zone picking system is mod-
eled as a closed queueing networkwith one entrance/
exit, M zones, and M + 1 nodes describing the con-
veyor between either two adjacent zones or between
the entrance/exit and the first or last zone. The system
entrance/exit is denoted as e, ] � z1, . . . , zM{ } denotes
the set of zones, and # � c1, . . . , cM+1{ } is the set
of conveyors. Finally, 6 � e{ } ∪ # ∪ ] is the set of

Figure 2. (Color online) A Zone Picking System with Single-Segment Routing and Its Corresponding Queueing Network
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all nodes in the network. We make the following
assumptions:

• There is an infinite supply of orders and totes at
the entrance of the system. This implies that a leaving
tote is always immediately replaced by a new tote.
Each tote initially has class r ⊆ ]; for example, r �
z2, z3{ }means that the tote has to visit the second and
third zone. After visiting zone zi, its class changes to
r\ zi{ }, and when r � ∅, all required zones have been
visited.

• The total number of totes in the system is always
N. As long as the total number of totes in the zones
and conveyor nodes is less than N, new totes are
released one by one from the entrance/exit at an
exponential rate μe, reflecting the rate at which a tote
is prepared to enter the system (i.e., unfolding, adding
labels, printing the packing list, etc.).

• The conveyor nodes are delay nodes with an
exponential delay with mean 1/μi, i ∈ #. Remark 1
discusses the extension to Erlang distributed and
deterministic delays.

• Each zone i ∈ ] has di ≥ 1( ) servers, which rep-
resent the order pickers in the zone. Orders are picked
in order of arrival. The order-picking time is expo-
nentially distributed with rate μi, i ∈ ], which cap-
tures both variations in the pick time per tote and
variations in the number of order lines to be picked.
This assumption is relaxed in Remark 3.

• When the order pickers are busy, incoming totes
are stored in a finite input buffer of size qi, i ∈ ]. In-
coming totes are blocked when the total number of
totes in the buffer equals qi.

Let xil be the class of the tote in position l of node i
and let ni be the number of totes in node i. Then the
vector xi � xi1, . . . , xil, . . . , xini

( )
describes the detailed

state of node i, and the queueing network with states
x � xi : i ∈ 6( ) is a Markov process. Let S N( ) be the
state space of the network, that is, the set of states x for
which

∑
i∈6 ni � N and ni ≤ di + qi, i ∈ ].

The routing of totes through the network proceeds
as follows. A new tote of class r ⊆ ] is released at the
system entrance with probability ψr. These release
probabilities correspond to a known order profile
obtained from, for example, historical order data or
forecasts. After release, a class r tote moves from the
system entrance to the first conveyor node c1. After
conveyor node ci, the tote either enters the input
buffer of zone i if zi ∈ r and the buffer is not full or
move to the next conveyor node ci+1. If the tote needs
to enter and the buffer is full, the tote skips the zone
and moves to ci+1 while keeping the same class. If the
buffer is not full, the tote enters the buffer of zone i,
and after waiting in the buffer, an order picker picks
the required order lines. After all picks are completed,
the tote enters ci+1, and its class changes to s � r\ zi{ }.
After visiting the last conveyor node cM+1, all totes

with r 	� ∅ are routed to the first conveyor node c1. The
other totes move to the exit and are immediately repla-
ced by a new tote waiting for release at the entrance.
Formally, let pir,js x( ) be the state-dependent routing

probability that a class r tote is routed from node i to
node j, where it moves into the last position and
changes to a class s tote given that the network is in
state x. Then

pe∅,c1r x( ) � ψr, (1)

pcir,zir x( ) � 1, i � 1, . . . ,M, zi ∈ r and nzi < dzi + qzi ,

(2)
pcir,ci+1r x( ) � 1, i � 1, . . . ,M, zi /∈ r or nzi � dzi + qzi ,

(3)
pzir,ci+1s x( ) � 1, i � 1, . . . ,M, zi ∈ r, s � r\ zi{ }, (4)

pcM+1∅,e∅ x( ) � 1, (5)

pcM+1r,c1r x( ) � 1, r 	� ∅, (6)

where the other routing probabilities are equal to zero.
The stationary distribution of this queueing network

is intractable because of thefinite buffers (Stidham 2002)
and the block-and-recirculate protocol, which justifies
the development of an approximation. The first step is
to approximate the block-and-recirculate network by a
jump-over network. This is described in Section 2.1.
This jump-over network exhibits a product-form steady-
state distribution as shown in Section 2.2. Closed-form
formulas of the visit ratios are derived in Section 2.3.
In Section 2.4, performance statistics of the jump-over
network can be easily calculated by, for example,
mean value analysis (MVA). Section 2.5 explains how
the jump-over network is used to approximate the
original network, and Section 2.6 investigates the
quality of the approximation.

2.1. Jump-Over Network
We approximate the block-and-recirculate protocol
by the jump-over blocking protocol (Van Dijk 1988).
This protocol, also known as “overtake full stations,
skipping, and blocking and rerouting,” admits closed-
form analytic results for single-class queueing net-
works (Pittel 1979, Schassberger 1984, Van Dijk 1988,
Economou and Fakinos 1998). Figure 3 illustrates both
blocking protocols.
In the block-and-recirculate protocol (Figure 3(a)),

a class r tote that intends to visit zone zi ∈ r either
enters the input buffer of zi or skips zi if its input buffer
is full. Class r totes skipping zone zi maintain their
class, and class r totes leaving zi always change to
class r\ zi{ } before entering conveyor ci+1 (because
these totes visited zi).
In the jump-over blocking protocol (Figure 3(b)), a

class r tote also skips zone zi if the input buffer is
full and proceeds as a class r tote when leaving zi.
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A Bernoulli trial then determines whether each class r
tote leaving zi changes class or not: it maintains class r
with probability bzi and changes to class s � r\ zi{ } oth-
erwise independent of whether the tote visited or
skipped zone zi. Hence, the routing probabilities under
jump-over blocking are state independent and given by
the following (cf. (2)–(4)):

pcir,zir � 1, i � 1, . . . ,M, zi ∈ r, (7)

pcir,ci+1r � 1, i � 1, . . . ,M, zi /∈ r, (8)

pzir,ci+1r � bzi , i � 1, . . . ,M, zi ∈ r, (9)

pzir,ci+1s � 1 − bzi , i � 1, . . . ,M, zi ∈ r, s � r\ zi{ }, (10)

where the other routing probabilities are the same as
in the block-and-recirculate network.

Key to the approximation is to choose bzi such that
the flows of class r and r\{zi} totes entering ci+1 match
under both protocols. This can be done by taking bzi as
the fraction of totes skipping zi in the block-and-
recirculate network. In other words, bzi is the block-
ing probability of zone zi under block and recirculate.
Naturally, this blocking probability is not known but
is estimated by an iterative algorithm in Section 2.5.

2.2. Product-Form Stationary Distribution
Let λir be the visit ratio of a class r tote to node i
satisfying the traffic equations

λir �
∑
j∈6

∑
s⊆]

λjspjs,ir, i ∈ 6, r ⊆ ]. (11)

Equation (11) determines the visit ratios λir up to a
multiplicative constant. By substituting the routing
probabilities (7)–(10), the traffic equations reduce to

λe∅ � λcM+1∅, (12)

λc1r � λe∅ψr + λcM+1r, r ⊆ ], (13)

λci+1r � λzirbzi , i � 1, . . . ,M, zi ∈ r ⊆ ], (14)

λci+1r � λcir + λzir∪{zi}(1 − bzi),
i � 1, . . . ,M, zi /∈ r ⊆ ], (15)

λzir � λcir, i � 1, . . . ,M, zi ∈ r ⊆ ], (16)

where the other visit ratios are equal to zero.

Theorem 1. The single-segment jump-over network has
stationary distribution

π x( ) � 1
G
∏
i∈6

πi xi( ), (17)

where G is the normalization constant and πi xi( ) are de-
fined as

πi xi( ) �

∏
ni

l�1
λixil

μi
, i � e,

∏
ni

l�1
λixil

μi
· 1
ni!

, i ∈ #,

∏
ni

l�1
λixil

μi
· 1
γ ni( ) , i ∈ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

with

γ ni( ) � ni!, if ni ≤ di,

di! di( )ni−di , if ni > di.

{
Proof. Let q(x, y) denote the transition rate from state x
to y. The transition rates are specified as follows. We
use the notation x − ril + sjk to indicate the state ob-
tained from x by removing the class r tote in position l
of node i (so r � xil) and inserting a class s tote into
position k of node j. The events in this network are
(single) totes departing from one node and moving to
the next one. If, in state x, a new class r tote is released
from entrance e, it moves to conveyor c1. The state after
this event is x − ∅e1 + rc1nc1+1 , and the rate is equal to

q x, x − ∅e1 + rc1nc1+1
( )

� μeψr. (19)

Naturally, this event is only feasible if ne > 0. If the
class r tote in position l of conveyor ci (with i ≤ M)
completes transportation and zi /∈ r, the tote continues
to the next conveyor ci+1, so

q x, x − rcil + rci+1nci+1+1
( )

� μci , zi /∈ r. (20)

If zi ∈ r and there is room in the buffer, the tote joins
zone zi. Hence, if nzi < dzi + qzi ,

q x, x − rcil + rzinzi+1
( )

� μci , zi ∈ r, (21)

Figure 3. Description of Zone Blocking in the Block-and-Recirculate Network and the Jump-Over Network
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and if nzi � dzi + qzi , the tote skips zi and changes class
to r\{zi} with probability 1 − bzi ,

q x,x− rcil + sci+1nci+1+1
( )

� μci 1− bzi
( )

, zi ∈ r, s � r\{zi},
μcibzi , zi ∈ r, s � r.

{
(22)

If order picking for the class r tote in position l of zone
zi (with l ≤ min(dzi ,nzi )) finishes, the tote continues to
ci+1. So

q x,x− rzil+ sci+1nci+1+1
( )

� μzi 1− bzi
( )

, s� r\{zi},
μzibzi , s� r.

{
(23)

Finally, if the class r tote in position l of the last
conveyor cM+1 completes transportation and r � ∅, the
tote joins exit e, and otherwise, it continues to the first
conveyor c1. Hence,

q x, x − rcM+1l + rjnj+1
( )

� μcM+1 , r � ∅, j � e,

μcM+1 , r 	� ∅, j � c1.

{
(24)

This completes the description of the nonzero tran-
sition rates. Note that the total rate from x is

q(x) � ∑
y∈S N( )

q x, y
( ) � μeI ne>0( )

+ ∑M+1

i�1
nciμci +

∑M
i�1

min dzi ,nzi
( )

μzi , (25)

where I ·( ) is the indicator function.
To prove (17) we use (Kelly 1979, theorem 1.13)

stating that, if we can find a collection of numbers
q̄ x, y
( )

, x, y ∈ S N( ) such that

q̄ x( ) � q x( ), x ∈ S N( ), (26)

and a collection of positive numbers π x( ), x ∈ S N( ),
summing to unity, such that

π x( )q(x, y) � π(y)q̄(y, x), x, y ∈ S N( ), (27)

then q̄(x, y) are the transition rates of the time-reversed
process and π x( ) is the stationary distribution of both
processes. Obviously, the proposed collection π x( )
is (17). Equation (27) then defines the rates q̄(x, y), and
the only thing that remains to be done is verifying (26).
First, we determine the rates q̄(x, y) from (27).

At entrance e, only class ∅ totes arrive from conveyor
cM+1. Hence, from (24), (27) and (17), we get, for l �
1, . . . ,ncM+1 + 1,

q̄ x, x − ∅ene + ∅cM+1l
( ) � μcM+1

π x − ∅ene + ∅cM+1l
( )

π(x)

� μcM+1

λcM+1∅
μcM+1

1
ncM+1+1
λe∅
μe

� μe

λe∅
λcM+1∅

ncM+1 + 1
, (28)

provided ne > 0. In conveyor c1, class r totes arrive
from entrance e and conveyor cM+1, so by (19),

q̄ x, x − rc1nc1 + ∅e1
( )

� μeψr

π x − rc1nc1 + ∅e1
( )

π(x)
� nc1μc1

λc1r
λe∅ψr, (29)

and by (24), for l � 1, . . . ,ncM+1 + 1,

q̄ x, x − rc1nc1 + rcM+1l

( )
� nc1μc1

λc1r

λcM+1r

ncM+1 + 1
. (30)

In conveyor ci+1, class r totes arrive from ci and zi. If
zi /∈ r, then by (20), for l � 1, . . . ,nci + 1,

q̄ x, x − rci+1nci+1 + rcil
( )

� nci+1μci+1
λci+1r

λcir

nci + 1
. (31)

If nzi � dzi + qzi , then class r totes also arrive from ci by
changing class. By (22), for l � 1, . . . ,nci + 1,

q̄ x, x − rci+1nci+1 + r ∪ {zi}cil
( )

� nci+1μci+1
λci+1r

λcir∪{zi}
nci + 1

1 − bzi
( )

.

(32)

Otherwise, if nzi < dzi + qzi , class r totes arrive from zi.
By (23), for l � 1, . . . ,min(dzi ,nzi + 1),

q̄ x, x − rci+1nci+1 + r ∪ {zi}zil
( )
� nci+1μci+1

λci+1r

λzir∪{zi}
min dzi ,nzi + 1

( ) 1 − bzi
( )

. (33)

Also class r totes with zi ∈ r arrive in ci+1 from ci and zi.
If zi ∈ r, then by (22), for l � 1, . . . ,nci + 1,

q̄ x, x − rci+1nci+1 + rcil
( )

� nci+1μci+1
λci+1r

λcir

nci + 1
bzi (34)

if nzi � dzi + qzi , and otherwise, if nzi < dzi + qzi , then by
(23), for l � 1, . . . ,min(dzi ,nzi + 1),

q̄ x, x − rci+1nci+1 + rzil
( )

� nci+1μci+1
λci+1r

λzir

min dzi , nzi + 1
( ) bzi .

(35)

Finally, in zone zi, class r totes arrive from ci with
zi ∈ r. By (21), for l � 1, . . . ,nci + 1,

q̄ x, x − rzinzi + rcil
( )

� min dzi , nzi
( )

μzi

λzir

λcir

nci + 1
. (36)

This completes the specification of the nonzero rates
q̄(x, y).
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To determine q̄(x), note that, by (28), the rate of
events in x coming from entrance e is equal to

∑ncM+1+1

l�1
q̄ x, x − ∅ene + ∅cM+1l
( ) � ∑ncM+1+1

l�1

μe

λe∅
λcM+1∅

ncM+1 + 1

� μe
λcM+1∅
λe∅

� μe,

provided ne > 0. The last equality follows from the
traffic Equation (12). By (29) and (30) and using traffic
Equation (13), it follows that the rate of events result-
ing from c1 is given by

q̄ x, x − rc1nc1 + ∅e1
( )

+ ∑ncM+1+1

l�1
q̄ x, x − rc1nc1 + rcM+1l

( )
� nc1μc1

λe∅ψr + λcM+1r

λc1r
� nc1μc1 .

If zi /∈ r, then it follows from (31)–(33) that the rate of
events resulting from ci+1 is∑nci+1

l�1
q̄ x, x − rci+1nci+1 + rcil
( )

+ ∑nci+1
l�1

q̄ x, x − rci+1nci+1 + r ∪ {zi}cil
( )

� nci+1μci+1
λcir + λcir∪{zi} 1 − bzi

( )
λci+1r

� nci+1μci+1 (37)

if nzi � dzi + qzi , and otherwise, if nzi < dzi + qzi ,∑nci+1
l�1

q̄ x, x − rci+1nci+1 + rcil
( )

+ ∑min(dzi ,nzi+1)

l�1
q̄ x, x − rci+1nci+1 + r ∪ {zi}zil
( )

� nci+1μci+1
λcir + λzir∪{zi} 1 − bzi

( )
λci+1r

� nci+1μci+1 , (38)

where the last equalities in (37) and (38) follow
from traffic Equations (15) and (16). Alternatively, if
zi ∈ r, then it follows from (34) and (35) and traffic
Equations (14) and (16), that the rate of events re-
sulting from ci+1 is also equal to nci+1μci+1 . By (36) and
(16), the rate of events resulting from zi is

∑nci+1
l�1

q̄ x, x − rzinzi + rcil
( )

� min dzi , nzi
( )

μzi
λcir

λzir

� min dzi , nzi
( )

μzi .

The total rate q̄(x) is now obtained by adding the rate
of events resulting from each of the nodes in the net-
work. It is exactly the same as q(x) given by (25). □

Theorem 1 provides the stationary distribution of the
jump-over network with detailed states x. However,

knowledge of the number of totes in each node is
sufficient to determine statistics, such as throughput
andwaiting times in the zones. To present the stationary
distribution in terms of the aggregate vector ni : i ∈ 6( ),
we transform the class-dependent visit ratios λir into
chain visit ratios

Vi �
∑

r⊆] λir∑
r⊆] λer

, i ∈ 6, (39)

which can be interpreted as the average number of
times an arbitrary tote visits node i before moving to
the exit node e. Because every tote can be replaced by
one of any other class at the exit, the jump-over network
has a single chain of classeswith a population ofN totes.

Corollary 1. In aggregate form, the stationary distribution
of the jump-over network is

π ni : i ∈ 6( ) � 1
G
∏
i∈6

πi ni( ), (40)

where G is the normalization constant and πi ni( ) are de-
fined as

πi xi( ) �

Vi

μi

( )ni
, i � e,

Vi

μi

( )ni
· 1
ni!

, i ∈ #,

Vi

μi

( )ni
· 1
γ ni( ) , i ∈ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(41)

Remark 1. Corollary 1 can be extended to Erlang-
distributed delays, similar as in the BCMP theorem
(Baskett et al. 1975). Suppose every conveyor ci consists
of a tandem of k conveyor nodes ci1 , . . . , cik , each with
exponential rate kμci . So the mean total transportation
time in conveyor ci is still 1/μci though its variability is
less than exponential. This larger network also pos-
sesses a stationary distribution of the form (17) and
(40), in which the set of conveyors is extended to
{ci1 , . . . , cik : i � 1, . . . ,M + 1} and in which ci1 , . . . , cik
have the same visit ratio as ci. By considering the total
number of totes nci in the tandem ci1 , . . . , cik , we obtain∑

nci1
+···+ncik �nci

πci1
nci1

( )
· · ·πcik

ncik

( )
� ∑

nci1
+···+ncik �nci

1
nci1 !

Vci1

kμci

( )nci1 · · · 1
ncik !

Vcik

kμci

( )ncik
� 1
nci !

∑
nci1

+···+ncik �nci

nci !
nci1 ! · · ·ncik !

Vci

kμci

( )nci
� 1
nci !

Vci

μci

( )nci� πci nci
( )

.

Hence, the aggregate product-form (40) is also valid if
the delay in conveyor node ci is Erlang-k distributed
with mean 1/μci . Because this is true for every k, we
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can take k to ∞ to conclude that Corollary 1 remains
valid for conveyor nodes ci with constant delay 1/μci
(Kelly 1979, lemma 3.9).

Remark 2. The notion of quasi-reversibility by Kelly
(1979) was extended by Chao and Miyazawa (2000)
and Henderson and Taylor (2001). They show that
quasi-reversibility can be applied to obtain product-
form solutions for queueing networks with signals,
negative customers, transitions involving three ormore
nodes, and batch movements. This approach can also
be used to study the jump-over network.

2.3. Chain Visit Ratios
To obtain the chain visit ratios Vi, i ∈ 6, we need to
solve the traffic Equation (11). This might, however,
require a large computational effort because the
number of tote classes, 2M, grows exponentially with
the number of zones. Alternatively, Vi can be calcu-
lated directly per node type, that is, entrance/exit,
conveyor, and zone. Clearly,Ve � 1 by (39). In the next
subsections, we explain how the chain visit ratios of
conveyors and zones are calculated.

2.3.1. Conveyor Nodes. A tote visits all conveyor
nodes with the same frequency during its stay in the
system. As a result, the chain visit ratios Vi of con-
veyor nodes are all the same and equal the average
number of circulations of an arbitrary tote in the
system before moving to the exit.

Let Xl denote the class of a tote at the last conveyor
cM+1 after its lth circulation. Then Xl, l ≥ 0{ } is an
absorbing Markov chain with state space consisting
of all subsets of], transition probabilitymatrixΦ, and
absorbing state ∅. The chain starts in state X0 � rwith
probability ψr. The average number of circulations
is then equal to the expected number of transitions
before entering the absorbing state ∅. Transition pro-
bability Φr,s from state r at the start of a circulation
to s at the end of this circulation is given by the fol-
lowing (cf. (8)–(10)):

Φr,s � ∏
j∈s

bj ∏
i∈r\s

1 − bi( ), s ⊆ r ⊆ ],

and zero otherwise. Note that transitions are only
possible to states with fewer zones. Hence, the states
can be ordered such that Φ is an upper triangular
matrix, which can be written as

Φ � Θ Υ

0 1

[ ]
, (42)

where Θ is an upper triangular matrix of transition
probabilities between transient states, andΥ is a column
vector of transition probabilities from transient states
to absorbing state ∅. The last row of Φ corresponds to

state ∅. The expected number of transitions until
absorption is then given by (Wolff 1989)

Vi � ψ I −Θ( )−11, i ∈ #, (43)

where I is the identitymatrix, 1 the column vector with
ones, and ψ � ψr : r ⊆ ]\∅( )

the row vectorwith release
probabilities ordered in the same way as Θ. Because
I −Θ( ) is an upper triangular, its inverse can be easily
determined by back-substitution. Denoteω � I −Θ( )−11;
then the jth element of ω follows from the recursion

ωj � 1+ ∑2M−1

k�j+1
Θj,kωk

( )
/ 1−Θj,j
( )

, j � 2M − 1,2M − 2, . . . ,1.

2.3.2. Zones. The chain visit ratios Vi of the zones are
equal to the mean number of times an arbitrary tote
visits zone i before leaving the system. In the jump-
over network, the number of times a tote visits zone i
follows a geometric distribution with success prob-
ability 1 − bi. Hence,

Vi �
∑

r: i∈r⊆]

ψr

1 − bi
, i ∈ ]. (44)

2.4. Mean Value Analysis
We formulate an MVA algorithm (Reiser and
Lavenberg 1980) to efficiently compute key perfor-
mance statistics of the jump-over network. MVA is
based on the arrival theorem, which holds because of
the product form solution of the jump-over network.
Let E Ti n( )( ) be the expected time a tote spends in node
i per visit, X n( ) be the system throughput, E Li n( )( ) be
the mean number of totes in node i, and πi j|n( )

be the
marginal queue length probabilities of j totes in zone i
given there are n totes in the network. MVA then
iteratively calculates these statistics.
First, initialize E Li 0( )( ) � 0, i ∈ 6, and πi 0|0( ) � 1,

πi j|0( )� 0 for j�1, . . . ,di+qi if i∈]. The mean through-
put time E Ti n( )( ) in entrance/exit e and conveyor
nodes i∈# can be calculated by

E Ti n( )( ) �
1
μi

1 + E Li n − 1( )( )( ), if i � e,

1
μi

, if i ∈ #.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (45)

This follows from the arrival theorem and the fact that
e is a single server and conveyor nodes i ∈ # are
infinite servers. The mean throughput time in zones
i ∈ ] can be calculated by

E Ti n( )( ) � ∑di+qi−1
j�di

j + 1 − di
( ) 1

diμi
πi j|n − 1
( )

+ 1
μi

1 − πi di + qi|n − 1
( )( )

, i ∈ ]. (46)
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The first term of (46) is the average waiting time given
the number of totes j in zone i on arrival, and the second
term is the tote’s own average service time. When the
buffer of zone i is full, the throughput time is zero
because the tote skips the zone. The system throughput
X n( ) is given by (Reiser and Lavenberg 1980)

X n( ) � n∑
i∈6 ViE Ti n( )( ) , (47)

where the denominator is the average time a tote
spends in the system, that is, the system throughput
time. Applying Little’s law yields

E Li n( )( ) � ViX n( )E Ti n( )( ), i ∈ 6. (48)

Finally, we determine the marginal queue length prob-
abilities by balancing the number of transitions per
time unit between state j − 1 and j, where j is the
number of totes in zone i. The rate from j to j − 1 is
given bymin j, di

( )
μiπi j|n( )

and, by the arrival theorem,
the rate from j − 1 to j is ViX n( )πi j − 1|n − 1

( )
. Hence,

πi j|n( )� ViX n( )
μimin j,di

( )πi j−1|n−1
( )

, j� 1, . . . ,di+ qi, i ∈],
(49)

where πi 0|n( ) follows from normalization

πi 0|n( ) � 1 − ∑di+qi
j�1

πi j|n( )
, i ∈ ]. (50)

Equation (50) has often been reported as the cause of
numerical instability in MVA (Chandy and Sauer
1980). A numerically stable alternative is equation (27)
of Reiser (1981).

Performance statistics for n � N can be determined
by subsequently applying (45)–(50) for n � 1, . . . ,N.
Key statistics are the system throughput time∑

i∈6 ViE Ti n( )( ); the probability that an arriving tote in
zone i is blocked, that is, bi � πi di + qi|N − 1

( )
; and the

utilization ρi given by

ρi �

X N( )/μi, if i � e,

ViX N( )/μi, if i ∈ #,

1 −∑di−1
j�0

di − j
( )

/di
( )

πi j|N( )
, if i ∈ ],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (51)

where ρe is the fraction of time the entrance/exit is
busy; ρi, i ∈ ], is the fraction of time a picker in zone i
is busy; and ρi, i ∈ # is the average number of totes in
conveyor node i.

Remark 3. MVA is also exact in a jump-over network
with deterministic conveyor delays (cf. Remark 1), but
it is no longer exact in a network with nonexponential
picking times. Still, closed queueing networks are
known to be robust to service distributions (Bolch et al.
2006). When zone i is full, an arriving tote skips zone i

and its throughput time is zero. Otherwise, the tote
enters zone i, where it first has to wait for the first
departure in zone i and then continues to wait for as
many departures as there are totes waiting for its ar-
rival before entering service. Hence, by adopting the
arrival theorem as an approximation (Adan and Van
der Wal 2011), we get

E Ti n( )( ) � Qi n − 1( )E Ri( )
di

+ ∑di+qi−1
j�di

j − di
( )E Bi( )

di
πi j|n − 1
( )

+ E Bi( ) 1 − πi di + qi|n − 1
( )( )

, i ∈ ], (52)

which replaces (46). In (52), E Bi( ) is the expected
service time of zone i, E Ri( ) � E B2

i

( )
/2E Bi( ) is the ex-

pected residual service time of zone i, and Qi n − 1( ) �∑di+qi−1
j�di πi j|n − 1

( )
is the probability that all order

pickers are busy upon entering zone i. Queue length
probabilities πi j|n( )

can again be determined by bal-
ancing the number of transitions per time unit between
state j − 1 and j, assuming as approximation that each
order picker has an exponential service rate 1/E Bi( ).

2.5. Iterative Algorithm for Calculating
Blocking Probabilities

In the jump-over network, totes leaving zone i ran-
domly change class according to probability bi, in-
dependent of the state of zone i, i ∈ ]. Probability bi
should match the blocking probability of zone i in the
block-and-recirculate network. However, this blocking
probability is not known in advance, but can be itera-
tively estimated. Initially, we set b 1( )

i � 0, i ∈ ]. Then,
we calculate the marginal queue length probabilities
using Equations (49) and (50) and take the fraction of
totes finding on arrival di + qi totes in zone i as new
estimate for bi. Thus, by the arrival theorem,

b m+1( )
i � π m( )

i di + qi|N − 1
( )

, i ∈ ], (53)

where superscript (m) indicates that the quantity has
been calculated in themth iteration. Based on this new
estimate for bi, routing probabilities and chain visit
ratios are recalculated for all zones and conveyor
nodes. After applying MVA, Equation (53) is used
again to get a better estimate of bi and so on. This
process continues until the difference between b m+1( )

i
and b m( )

i for all i is less than some small ε. The final
estimates for performance statistics are then calcu-
lated. In our experience, convergence is fast and does
not depend on the initial estimates of bi.

2.6. Example of the Single-Segment Routing Model
To illustrate the performance and accuracy of the
jump-over approximation,we consider the zone picking
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system with two zones shown in Figure 2. There are 22

tote classes. The release probabilities are set to ψ∅ � 0
and ψ z1{ } � ψ z2{ } � ψ z1,z2{ } � 1/3, and the mean service
times are μ−1

e � 5 seconds for the entrance/exit and
μ−1
z1 � μ−1

z2 � 15 seconds for the zones. Conveyor de-
lays are deterministic and equal to μ−1

c1 � μ−1
c2 � μ−1

c3 �
100 seconds. The number of order pickers dz1 and dz2
are equal to one, and the buffer sizes of the zones are
qz1 � 2 and qz2 � 1, respectively.

Table 1 presents the average time in seconds a tote
spends on the conveyor E T# N( )( ) � ∑

i∈# E Ti n( )( ) and
in zones E T] N( )( ) � ∑

i∈] E Ti n( )( ) and the overall
throughput rate per hour X N( ). These statistics are
shown for the jump-over network (Jump), for the same
closed queueing network with infinite buffers in the
zones (CQN), and for the approximation of Yu andDe
Koster (2008) (YdK). YdK uses an open queueing
network in its analysis. Using bisection, the arrival
rate of this approximation is set such that the average
number of totes in the open network is equal toN. The
results show that the jump-over network produces
more accurate results compared with the simulation
of the original block-and-recirculate queueing net-
work (Sim), in which the half width of the 95% con-
fidence interval is given in brackets. In all cases, the
algorithm stops after five iterations with ε � 10−3.
Both CQN and YdK assume infinite buffers, which
means that they cannot estimate the blocking prob-
abilities. The run times for the Jump, CQN, and YdK
methods are less than a second on a Core i7 with 2.4
GHz and 8 GB of RAM, whereas the simulation for
N � 100 takes around 30 seconds (see Section 4 for
more details on the simulation setup).

If the system contains a small number of totesN, the
errors of the jump-over network are negligible and
relatively small for CQN and YdK. This is obvious
because almost no blocking occurs in the system; that
is, only 5% of the totes that intend to visit the second
zone are blocked. This means that the performance of
CQN and YdK is similar to that of the jump-over
network and the block-and-recirculate network. How-
ever, if the system contains a high number of totes,
the blocking probability increases, and the totes have
to recirculate more often.
If the number of totes in the system equals N � 40

or 50, blocking becomes more prominent. Because
every zone is visited with the same frequency, more
blocking occurs at zone 2 than at zone 1 because of dif-
ferences in buffer sizes. Moreover, the system through-
put time increases rapidly, whereas the throughput rate
stabilizes because all the zones become saturated. CQN
and YdK produce large errors in the average time a
tote spends in the zones and at the conveyor nodes,
which is due to the assumption of infinite buffers in
the zones. This is not the case in the jump-over net-
work. Because of recirculation, the conveyor nodes
act as buffers for totes that cannot enter a zone. When
N � 100, blocking negatively affects the performance
of the system, and totes spend twice as long in the
system compared with N � 50.

3. Multisegment Zone Picking Systems
This section presents the extension to multisegment
zone-picking systems, which comprise three main
parts: entrance/exit stations, conveyors, and zones.
Figure 4 shows a zone picking system with four

Table 1. Performance Statistics for the Example with Varying Number of Totes N

X N( ) (in hours−1) E T] N( )( ) (in seconds)

Error, % Error, %

N Sim Jump CQN YdK Jump CQN YdK Sim Jump CQN YdK Jump CQN YdK

10 104.4 ±0.16( ) 104.5 108.2 107.9 0.13 3.62 3.39 25.2 ±0.06( ) 25.3 27.1 28.6 0.12 7.27 13.15
20 182.8 ±0.25( ) 182.9 206.5 204.9 0.04 12.93 12.06 29.9 ±0.08( ) 29.8 41.8 46.4 0.28 40.00 55.29
30 234.3 ±0.52( ) 235.3 283.5 276.2 0.44 21.03 17.92 33.3 ±0.13( ) 33.1 72.8 86.0 0.58 119.07 158.47
40 268.8 ±0.58( ) 269.8 326.2 313.4 0.40 21.39 16.61 35.5 ±0.08( ) 35.5 132.4 154.5 0.02 273.31 335.67
50 291.5 ±0.39( ) 293.0 342.0 330.1 0.52 17.34 13.24 37.3 ±0.08( ) 37.3 216.8 240.4 0.06 481.65 544.82
100 336.4 ±0.65( ) 338.6 354.9 350.1 0.67 5.50 4.07 42.4 ±0.22( ) 42.3 704.6 723.4 0.17 1,563.16 1,607.49

E T# N( )( ) (in seconds)

Error, % bz1 bz2

N Sim Jump CQN YdK Jump CQN YdK Sim Jump Error, % Sim Jump Error, %

10 313.7 ±0.52( ) 313.4 300.0 300.0 0.08 4.37 4.37 0.01 ±0.00( ) 0.01 1.97 0.05 ±0.00( ) 0.05 0.62
20 357.4 ±0.54( ) 357.3 300.0 300.0 0.04 16.07 16.07 0.07 ±0.00( ) 0.07 1.92 0.18 ±0.00( ) 0.18 0.06
30 420.1 ±1.05( ) 418.7 300.0 300.0 0.34 28.59 28.59 0.16 ±0.00( ) 0.15 4.14 0.31 ±0.00( ) 0.31 0.27
40 491.9 ±0.96( ) 490.4 300.0 300.0 0.32 39.02 39.02 0.24 ±0.00( ) 0.23 3.40 0.41 ±0.00( ) 0.41 0.23
50 571.6 ±0.72( ) 568.8 300.0 300.0 0.49 47.51 47.51 0.32 ±0.00( ) 0.31 3.11 0.50 ±0.00( ) 0.50 0.41
100 1017.7 ±1.93( ) 1,011.5 300.0 300.0 0.61 70.52 70.52 0.57 ±0.01( ) 0.55 4.41 0.72 ±0.00( ) 0.73 1.01
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segments and 11 zones. The workload control mecha-
nism releases a tote, which travels to the first segment in
which order lines have to be picked. The tote enters via
the segment entrance station and stays in the segment
until it has visited all required zoneswithin the segment.
When finished, the tote leaves the segment and is
transported to another segment or to the system exit if
the picking process has finished. The workload control
mechanism controls the maximum number of totes in
the system as well as the maximum number of totes
within each segment. If a tote tries to enter a segment
that is saturated, the controlmechanismprevents it from
entering. The blocked tote then skips the segment and
stays on the main conveyor, potentially visiting other
segments before again attempting to enter this segment.
This is similar to zone blocking, but now blocking de-
pends on the number of totes within an entire segment
instead of in a single zone.

The multisegment zone-picking system is modeled
as a closed queueing network with K segments. %1 �
e0, e1, . . . ek, . . . , eK{ } denotes the set of entrance/exit
stations, where e0 is the system entrance/exit and ek is
the entrance of segment k, representing the conveyor
connecting segment k with the main conveyor. Let
] � ∪K

k�1]
k is the set of zones, where ]k � zk1, . . . , z

k
mk

{ }
are the zones in segment k. The total number of

zones is M � ∑K
k�1 m

k. The set of conveyor nodes is
# � ∪K

k�0#
k, where #0 � c01, . . . , c

0
K+1

{ }
are the main

conveyor nodes and #k � ck1, . . . , c
k
mk+1

{ }
are the con-

veyor nodes in segment k. Finally,6 � % ∪ # ∪ ] is the
set of all nodes in the network. Figure 5 shows the
topology of the queueing network with K segments.
The system is partitioned into K + 1 subsystems:

*0,*1, . . . ,*k, . . . ,*K
{ }

, where *0 � e0{ }∪#0 consists
of the system entrance/exit and the nodes on themain
conveyor, and *k � ek{ }∪#k∪]k, the set of nodes
belonging to the kth segment. We make the following
assumptions:
• Each tote has a class r ⊆ ] of zones to be visited

and rk ⊆ ]k, k � 1, . . . ,K, describes the zones a class r
tote has to visit in segment k. A class r tote enters
segment k if and only if rk 	� ∅.
• Entrance station ek to segment k is a delay node

with an exponential delay with mean 1/μek , k �
1, . . . ,K that accounts for the time a tote needs for
entering and leaving the segment.
• The maximum number of totes allowed in seg-

ment k is Nk ≤ N, k � 1, . . . ,K.
At system entrance e0, new totes of class r ⊆ ] are

released with probability ψr. After release, a class r
tote is transported from e0 to the first main conveyor
node c01. From c0k , the tote is either transported to

Figure 4. (Color online) A Multisegment Zone Picking System with Four Segments and 11 Zones
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segment entrance ek if rk 	� ∅ormoved to the nextmain
conveyor node c0k+1. If the number of totes in segment k
equals Nk, the tote skips segment k and also moves to
c0k+1 while its class remains the same. If the tote enters
segment k, it stays there until it has visited all required
zones rk. When the tote leaves segment k via ckmk+1, its
class changes from r upon entering segment k to s �
r\rk upon leaving. After visiting the last main conveyor
node c0K+1, all totes with r 	� ∅ are routed to c01. Other
totes are transported to exit e0 and immediately re-
placed by a new one, waiting for release. The routing
probabilities are formally described in Section EC.1.1.

The next step is to approximate the block-and-
recirculate protocol by the jump-over blocking
protocol in Section 3.1. The queueing network with
jump-over blocking has a product-form stationary
distribution,which is described in Section EC.1.2. The
calculation of visit ratios is described in Section EC.1.3.
Performance statistics of the jump-over network are

calculated in Section 3.2 using flow-equivalent servers
(Chandy et al. 1975) andMVA. An iterative algorithm
to estimate the blocking probabilities is presented in
Section 3.3.

3.1. Jump-Over Network
Totes can be blocked either by a zone or by a
segment. Zone blocking has been described in
Section 2. This section focuses on segment blocking,
illustrated in Figure 6. In the block-and-recirculate
protocol (Figure 6(a)), a class r tote that intends to visit
segment k, that is, rk 	� ∅, either enters if the number of
totes in segment k is below Nk or skips segment k.
Class r totes skipping segment k maintain their class,
and class r totes entering segment k always leave
this segment as class r\rk totes.
In the jump-over blocking protocol (Figure 6(b)),

a class r tote also skips segment k when it is full
and proceeds as a class r\rk tote leaving segment k.

Figure 5. (Color online) A Multisegment Zone Picking Queueing Network with K Segments

Figure 6. (Color online) Description of Segment Blocking in the Block-and-Recirculate Network and the Jump-Over Network
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A Bernoulli trial then determines whether each tote
of class r\rk leaving segment k changes class or not. It
maintains class r\rk with probability 1 − Bk and re-
verts to class r otherwise, independent of whether the
tote visited or skipped segment k. However, totes
leaving segment k carry no information about which
zones have been visited in segment k. To be able to
revert to the correct class again, we add this in-
formation to the class description by including the
initial class of the tote at the time of release from e0.
Denote the new classes by r̄ � h, r{ }, where h ⊆ ] is
the initial class and r ⊆ ] is the current class of zones
that still need to be visited. The initial class h only
changes when the tote is released from e0. Hence, the
routing probabilities of a class s̄ � h, s{ } tote leaving
segment k, that is, sk � ∅, are given by the following
(cf. (9) and (10)):

pck
mk+1 s̄,c

0
k+1 s̄

� 1 − Bk, k � 1, . . . ,K, s̄ � h, s{ }, sk � ∅,
pck

mk+1 s̄,c
0
k+1 r̄

� Bk, k � 1, . . . ,K, s̄ � h, s{ }, sk � ∅,
r̄ � h, s ∪ hk

{ }
.

The flows of class r and class r\rk totes entering c0k+1
match under both protocols by choosing Bk as the
fraction of totes skipping segment k in the block-and-
recirculate network. In other words, Bk is the blocking
probability of segment k under block and recirculate.
It is estimated in Section 3.3.

3.2. Aggregation Technique
We can analyze the jump-over network by directly
applying MVA as described in Section 2.4. However,
it is computationally more efficient to first apply
Norton’s theorem by replacing all segments by flow-
equivalent server centers with load-dependent ex-
ponential service rates (Chandy et al. 1975, Walrand
1983, Boucherie 1998) and then applying MVA.
Norton’s equivalent of the jump-over network is
constructed by replacing each segment k by a flow
equivalent server with exponential service rate

μFESk n( ) � Xk n( ), n � 1, . . . ,Nk, k � 1, . . . ,K, (54)

where Xk n( ) is the throughput of segment k in iso-
lation when it contains n totes. Segment k is isolated
by short-circuiting all nodes outside segment k. This

means that a tote leaving segment k through conveyor
node ckmk+1 is directly routed back to entrance ek. The
throughput of this isolated segment can be evaluated
by MVA (where the entrance is now a delay node).
Figure 7 shows Norton’s equivalent of Figure 5,

which is identical to Figure 2(b) except that the zones
are replaced by flow-equivalent servers. Norton’s net-
work can be analyzed by MVA, where Equation (46)
should be replaced by the mean throughput time in
the kth flow-equivalent server (Reiser 1981),

E TFESk n( )( )� ∑Nk−1

j�1

j
μFESk j

( )ΠFESk j−1|n−1
( )

, k� 1, . . . ,K,

(55)

where ΠFESk j|n( )
are the marginal queue length proba-

bilities of having j totes in the kth flow-equivalent
server in a network with n circulating totes. These
probabilities can be obtained through a balance ar-
gument, similar to in (49),

ΠFESk j|n( ) � VFESkX n( )
μFESk j

( ) ΠFESk j − 1|n − 1
( )

,

j � 1, . . . ,Nk, k � 1, . . . ,K,
(56)

whereVFESk is the visit ratio of the kth flow-equivalent
server, which is equal to the visit ratio of entrance ek.
Equation (55) is obtained by applying Little’s law and
substitution of (56).
Performance statistics in Norton’s network corre-

spond to aggregated performance statistics of the seg-
ments, for example,E TFESk N( )( )

is themean throughput
time of segment k, and ΠFESk j|N( )

are the marginal
probabilities of having j totes in segment k when there
are N totes in the jump-over network. Detailed per-
formance statistics of nodes within segments can
be retrieved by disaggregation. Let πk

i j | n( )
be the

probability of j totes in node i ∈ *k given there are n
totes in segment k. The detailed queue length prob-
abilities πi j|N( )

are then given by (Baynat and Dallery
1993):

πi j|N( ) � Πi j|N( )
, if i ∈ *0,∑Nk

l�1
πk
i j | l( )

ΠFESk l|N( ), if i ∈ *k.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (57)

Figure 7. The Norton Equivalent of the Jump-Over Network

Note. Segments are replaced by a flow-equivalent server with load-dependent exponential service rates.
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Performance statistics of all nodes can now be cal-
culated as follows. Utilization of system entrance e0
(with de0 � 1) and zones i ∈ ] is given by

ρi � 1 −∑di−1
j�0

di − j
di

πi j|N( )
, i ∈ e0 ∪ ]. (58)

The mean number of totes in node i ∈ 6 is given by

E Li N( )( ) � ∑σi
j�1

jπi j|N( )
, i ∈ 6, (59)

where σi �N if i∈*0, and σi �Nk if i∈*k\]k and di+qi
if i∈]. Applying Little’s law yields

E Ti N( )( ) � E Li N( )( )/ViX N( ), i ∈ 6, (60)

where X N( ) is the throughput rate of Norton’s
network.

3.3. Iterative Algorithm for Calculating the
Blocking Probabilities

In the jump-over network, totes leaving segment k or
zone i randomly change class according to probability
Bk and bi, respectively. The idea is to match Bk and bi
with the blocking probability of segment k and zone i
in the block-and-recirculate network, which can be
iteratively estimated as follows. Initially, B 1( )

k � 0,
k � 1, . . . ,K, and b 1( )

i � 0, i ∈ ]. Then we calculate
the marginal queue length probabilities using Equa-
tion (56) in Norton’s network and estimate Bk as a
fraction of arrivals finding Nk totes in flow-equivalent
server k. By the arrival theorem,

B m+1( )
k � Π

m( )
FESk

Nk |N − 1
( )

, k � 1, . . . ,K, (61)

where the superscript (m) corresponds to the iteration.
Accordingly, by using the detailed marginal queue
length probabilities of Equation (57), we get

b m+1( )
i � π m( )

i di + qi|Nk − 1,N − 1
( )

,

� ∑Nk−1

l�1
πk
i di + qi | l( )

ΠFESk l|N − 1( ), i ∈ ], (62)

which is the probability of finding a full buffer in zone
i in a network with N − 1 totes, where at most Nk − 1
totes are allowed in segment k. Note that we apply a
modification of the “usual” arrival theorem: an ar-
riving tote in zone i not only sees the network in
equilibrium without itself but also one in which the
capacity of segment k containing zone i is reduced by
one.

Subsequently, routing probabilities and visit ra-
tios are recalculated and so on. This procedure is

repeated until the differences B m+1( )
k −B m( )

k and b m+1( )
i −

b m( )
i for all k and i are less than some ε.

4. Numerical Results
We compare the results of the jump-over approxi-
mation with a discrete-event simulation of the block-
and-recirculate network. This section is split into two
parts. Section 4.1 is devoted to single-segment rout-
ing systems and Section 4.2 to multisegment rout-
ing systems. Both the jump-over network and the
discrete-event simulation are implemented in Java. In
each case, the simulation is run 10 times for 1,000,000
seconds, preceded by 10,000 seconds of initialization for
the system to become stable. This guarantees that the
width of the 95% confidence interval of the system
throughput time is less than 1% of the mean value. All
experiments are run on Core i7 with 2.4 GHz and 8 GB
of RAM.

4.1. Single-Segment Systems
This section explores the performance of the ap-
proximation for the single-segment system. Table 2
lists the parameters of the test set. The number of
zones M varies between one and eight, and the
number of totes N varies between 10 and 80. We first
assume that all zones and conveyor nodes are iden-
tical and that all tote classes are released into the
system with equal probability. This ensures that the
workload of all zones is balanced. In the test set,
conveyor delays are deterministic andμ−1

i , i ∈ #varies
between 20 and 60 seconds. Picking times are expo-
nential, and μ−1

i , i ∈ ] varies between 10 and 30 sec-
onds. The number of order pickers di, i ∈ ] and buffer
places qi, i ∈ ] varies between one and three and zero

Table 2. Parameters of the Test Set for the Single-Segment
System

(a) Balanced test set (9,600 cases)

Parameter Value

Number of zones, M 1, 2, 3, 4, 5, 6, 7, 8
Number of totes, N 10, 20, 30, . . . , 80
Conveyor delays, μ−1

i , i ∈ # 20, 30, 40, 50, 60
Mean picking times, μ−1

i , i ∈ ] 10, 15, 20, 25, 30
Number of order pickers, di, i ∈ ] 1, 2, 3
Buffer size of a zone, qi, i ∈ ] 0, 1

(b) Imbalanced test set (224 cases)

Parameter Value

Number of zones, M 2, 3, 4, 5, 6, 7, 8
Number of totes, N 10, 20, 30, . . . , 80
Mean picking times, μ−1

i , i ∈ ] •10, 10, 10, . . .
•10, 12, 14, . . .
•10, 15, 20, . . .
•10, 20, 30, . . .
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and one, respectively. In total, this leads to 9,600
cases.

We also examine the effect of workload imbalance
resulting from differences in mean picking times
among zones. In this test set, the deterministic delays
μ−1
i , i ∈ # are equal to 30 seconds, and both the number

of order pickers di, i ∈ ] and buffer places qi, i ∈ ] are
equal to one. Four different scenarios are created for
the mean picking times. In the first scenario, the mean
picking times are equal, whereas in the other three
scenarios, they increase by either 2, 5, or 10 seconds
per subsequent zone. This leads to an additional 224
cases. The run time per case for the analytical model is
less than a second, whereas simulation takes at most
30 seconds for the larger systems.

The results of the balanced test set are summarized
in Tables 3–6. Each table lists the average relative
error between approximation and simulation of sys-
tem throughput in hour−1, the average number of
circulations of a tote beforemoving to the exit, and the
sum of mean throughput times of the zones. Each
table also gives the percentage of cases that fall in
three different error ranges. We can conclude from
the results that the approximation produces very
accurate results for the three performance statistics.
The overall average error is 0.54% for the system
throughput, 0.65% for the mean number of circula-
tions, and 0.30% for the average mean throughput

times of the zones. Almost all errors are between
0–1%, with only a few larger than 5%.
Tables 3 and 4 show that the largest errors occur

when the system has three or four zones andwhen the
number of totes in the system is high. An explanation
is that the probability of blockages increases with a
lower number of zones M or with a higher number
of totes N in the system. Moreover, if blocking is
prevalent, more zones implies that the approximation
needs to estimate more blocking probabilities. This
creates more room for error. Eventually, M is high
enough for blocking to be almost fully absent for anyN.
The approximation becomes exact because the net-
work behaves precisely as the block-and-recirculate
network, in which totes are hardly ever blocked.
Tables 5 and 6 show that the largest errors occur

with low conveyor delays and high mean picking
times. Here the product-form assumption that each
node can be analyzed in isolation does not describe
the real behavior adequately. For example, if a tote
is blocked by a zone, it can circulate through the
entire system and eventually encounter the zone still
working on the same tote. This creates dependencies
between successive visits to the nodes that are not
captured by the approximation. However, this situ-
ation is unlikely in practice. The total recirculation
time is usually much higher than the time a tote
spends in a zone.

Table 3. Results of the Balanced Test Set with a Varying Number of Zones M

M

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

1 0.08 100.0 0.0 0.0 0.08 100.0 0.0 0.0 0.09 100.0 0.0 0.0
2 0.67 70.0 29.8 0.2 0.78 69.0 29.8 1.3 0.44 83.9 16.1 0.0
3 0.78 68.2 31.7 0.2 0.94 67.2 30.3 2.5 0.44 86.2 13.8 0.0
4 0.73 71.9 27.8 0.3 0.90 71.3 25.9 2.8 0.38 90.3 9.8 0.0
5 0.64 76.6 23.3 0.2 0.80 75.0 22.4 2.6 0.32 93.2 6.8 0.0
6 0.54 80.4 19.5 0.1 0.68 78.6 18.9 2.5 0.28 94.9 5.1 0.0
7 0.45 83.8 16.2 0.0 0.57 82.4 15.8 1.8 0.25 96.9 3.1 0.0
8 0.38 86.7 13.3 0.0 0.48 85.2 13.5 1.3 0.23 97.7 2.3 0.0

Table 4. Results of the Balanced Test Set with a Varying Number of Totes in the System N

N

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

10 0.24 95.0 4.8 0.2 0.29 93.1 5.9 1.0 0.21 99.8 0.3 0.0
20 0.40 86.8 12.9 0.3 0.53 85.5 12.3 2.2 0.21 97.9 2.1 0.0
30 0.52 81.7 18.1 0.3 0.67 80.0 17.5 2.5 0.24 95.6 4.4 0.0
40 0.59 77.6 22.3 0.2 0.74 76.7 20.8 2.6 0.28 93.0 7.0 0.0
50 0.62 75.3 24.8 0.0 0.77 74.2 23.7 2.2 0.32 91.8 8.3 0.0
60 0.64 74.1 25.9 0.0 0.76 73.0 25.1 1.9 0.36 89.6 10.4 0.0
70 0.64 73.6 26.4 0.0 0.75 72.9 25.7 1.4 0.38 88.8 11.3 0.0
80 0.64 73.6 26.4 0.0 0.72 73.3 25.7 1.0 0.41 86.7 13.3 0.0
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Table 7 presents the results of the imbalanced test
set. The errors of the three performance statistics are
slightly larger than those of the balanced test set. In
particular, the errors increase when there is more
imbalance between the zones. Totes that need to visit
the slowest zone now spend more time in the system
because the probability of blockages is higher, which
increases errors, as seen in the previous tables. Still,
on average, the errors for the three statistics are well
below 1%.

4.2. Multisegment Systems
We create a new test set for the multisegment system.
Table 8 lists its parameters. In all test cases, the number
of zones M equals 18, and the number of zones per
segmentmk varies between three, six, and nine. Zones
and conveyor nodes are identical within every seg-
ment, that is, μ−1

i � 30, i ∈ #\#0, μ−1
i � 15, i ∈ ], and

qi � di � 1, i ∈ ]. Release probabilities ψr are the same
for all r, and the service means of all entrances are
equal to μ−1

i � 5, i ∈ %. Picking times and system en-
trance times are exponential. Delays in conveyor
nodes and segment entrances are deterministic. The
number of totes in the system varies between 10 and
80, and the capacities of the segmentsNk vary between
10 and 40 totes as long as N ≥ Nk. The main conveyor
times, μ−1

i , i ∈ #0 vary between 10 and 60. This leads to
1,320 test cases. The run time per case for the ana-
lytical model is around 10 seconds, whereas simu-
lation takes at most one minute for larger systems.

The results of the multisegment test set are sum-
marized in Tables 9 and 10. The overall average error
is 0.21% for system throughput, 0.93% for the mean

number of circulations on the main conveyor, and
0.24% for the average throughput times of the zones.
The tables show that the errors are the largest in cases
with a low number of segments and a fast main
conveyor. In these cases, totes are more likely to be
blocked by a segment and subsequently need to
recirculate on the main conveyor multiple times. As
seen in the previous results, errors increase when
there aremore blockages in the system. Similar results
can be seen when varying the segment capacities Nk.
Comparing the systems shows that, if the main con-

veyors are slow (μ−1
i ≥ 50 seconds) and if the system

contains a low number of totes (N ≤ 20), the systems
with mk � 9, k � 1, 2 obtain the highest throughput
because of less delay on the conveyors. However, if
the segment capacity Nk ≤ 20 is low, mk � 3, k �
1, . . . , 6 has the highest throughput because the
probability that a tote is blocked by a segment is
lower, and less recirculation of totes is required.
A further validation for a real-life system with

nonexponential picking times and multiple segments
can be found in Section EC.2.

5. Conclusion and Further Research
In this paper, we study sequential zone picking
systems with single-segment routing and those with
multisegment routing. We propose a queueing net-
work to estimate the throughput capacity. Because an
exact analysis of this queueing network is not feasible,
we approximate its blocking protocol with the jump-
over protocol. This network admits a product-form
solution. We use MVA and an aggregation technique
to obtain accurate performance estimates. Results

Table 6. Results of the Balanced Test Set with Varying Mean Picking Times μ−1
i , i ∈ ]

μ−1
i

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

10 0.24 93.0 7.0 0.0 0.23 92.7 7.3 0.0 0.17 98.2 1.8 0.0
15 0.40 84.9 15.1 0.0 0.46 83.5 16.1 0.4 0.23 95.5 4.5 0.0
20 0.55 78.4 21.6 0.0 0.67 76.8 21.7 1.5 0.30 92.7 7.3 0.0
25 0.68 72.9 27.0 0.2 0.86 71.8 25.3 2.9 0.37 90.1 9.9 0.0
30 0.80 69.3 30.3 0.4 1.05 68.1 27.3 4.5 0.43 87.8 12.2 0.0

Table 5. Results of the Balanced Test Set with Varying Conveyor Delays μ−1
i , i ∈ #

μ−1
i

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

20 0.91 66.5 33.0 0.5 1.21 65.3 28.1 6.7 0.47 85.4 14.6 0.0
30 0.64 74.1 25.9 0.0 0.79 72.7 25.2 2.2 0.33 91.0 9.0 0.0
40 0.47 81.4 18.6 0.0 0.55 80.3 19.4 0.4 0.27 94.4 5.6 0.0
50 0.36 86.3 13.7 0.0 0.41 85.5 14.5 0.0 0.23 96.3 3.8 0.0
60 0.29 90.2 9.8 0.0 0.31 89.2 10.8 0.0 0.21 97.3 2.7 0.0
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indicate that the relative error in the throughput es-
timate is typically less than 1% compared with
simulation.

We suggest some directions for further research.
• Operational policies. The model can be used

to evaluate and compare the throughput capacity
of operational policies, such as order batching and
order splitting, as in Yu and De Koster (2008). An
optimization framework can be formulated for the

allocation of products to zones to maximize through-
put capacity.
• Flexible order pickers. The model can be ex-

tended to study the impact of flexible order pickers in
adjacent zones, helping each other when the work-
load in one of the zones is temporarily high.
• Merging of totes. When the zone picking system

is heavily loaded, congestion can occur when streams
of totes merge. For example, totes leaving a zone

Table 7. Results of the Imbalanced Test Set with Varying Mean Picking Times μ−1
i , i ∈ ]

μ−1
i

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

10,10,10,. . . 0.20 100.0 0.0 0.0 0.20 100.0 0.0 0.0 0.15 100.0 0.0 0
10,12,14,. . . 0.23 100.0 0.0 0.0 0.24 100.0 0.0 0.0 0.16 100.0 0.0 0.0
10,15,20,. . . 0.35 98.2 1.8 0.0 0.36 94.6 5.4 0.0 0.21 100.0 0.0 0.0
10,20,30,. . . 0.40 89.3 10.7 0.0 0.45 85.7 14.3 0.0 0.32 100.0 0.0 0.0

Table 8. Parameters of the Multisegment Routing Model Test Set (1,320 Cases)

Parameter Value Parameter Value

Number of segments, K 2, 3, 4, 5, 6 Number of zones per segment, mk •9, 9
Number of totes, N 10, 20, . . . , 80 •6, 6, 6
Mean main conveyor times, μ−1

i , i ∈ #0 10, 20, 30, 40, 50, 60 •3, 6, 3, 6
Segment capacity, Nk , k � 1, . . . ,K 10, 15, 20, 25, 30, 35, 40 •3, 3, 6, 3, 3

•3, 3, 3, 3, 3, 3

Table 9. Results of the Multisegment Routing Test Set with a Varying Number of Zones
per Segment mk

mk

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

9,9 0.21 99.6 0.4 0.0 2.27 66.3 20.1 13.6 0.23 100.0 0.0 0.0
6,6,6 0.25 100.0 0.0 0.0 1.23 72.0 21.6 6.4 0.23 100.0 0.0 0.0
6,3,6,3 0.19 100.0 0.0 0.0 0.43 84.8 15.2 0.0 0.24 100.0 0.0 0.0
3,3,6,3,3 0.16 100.0 0.0 0.0 0.28 89.8 10.2 0.0 0.25 100.0 0.0 0.0
3,3,3,3,3,3 0.23 99.2 0.8 0.0 0.43 86.7 12.5 0.8 0.23 100.0 0.0 0.0

Table 10. Results of the Multisegment Routing Test Set with Varying Mean Conveyor
Times μ−1

i , i ∈ #0

μ−1
i , i ∈ #0

Error % in system
throughput

Error % in number
of circulations

Error % in throughput
times zones

Average 0–1 1–5 > 5 Average 0–1 1–5 > 5 Average 0–1 1–5 > 5

10 0.28 99.1 0.9 0.0 2.23 66.8 22.3 10.9 0.23 100.0 0.0 0.0
20 0.24 100.0 0.0 0.0 1.15 75.5 18.6 5.9 0.23 100.0 0.0 0.0
30 0.21 100.0 0.0 0.0 0.77 77.3 18.2 4.5 0.24 100.0 0.0 0.0
40 0.19 99.5 0.5 0.0 0.58 83.6 14.5 1.8 0.24 100.0 0.0 0.0
50 0.18 100.0 0.0 0.0 0.45 86.8 11.8 1.4 0.24 100.0 0.0 0.0
60 0.16 100.0 0.0 0.0 0.37 89.5 10.0 0.5 0.24 100.0 0.0 0.0
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have to wait for a sufficiently large open space on the
conveyor before merging. This waiting time can be
viewed as blocking after service and can be incor-
porated into the model to assess its impact on the
throughput capacity (van der Gaast et al. 2018).

• External order arrivals. To estimate the throughput
capacity, we assume that when a tote has collected all
required items for a customer order, a neworder tote can
be released immediately; that is, there are always cus-
tomer orders available. In an operational setting, the
arrival rate λ of customer orders is lower than the
throughput capacity, so it may happen that a new
order is not available upon completion of a tote.
Hence, the number of circulating totes is not always
N, but can also be less. An appropriate model to study
this situation is a semiopen queueing network (see Jia
and Heragu (2009)), for which the proposed closed
queueing network may be used as a building block as
follows. For each population n � 0, . . . ,N, the MVA al-
gorithm in Sections 2.4 and 3.2 provides the through-
put X n( ). Then the semiopen queueing network is
replaced by a flow-equivalent server with service rate
μn � X n( ) for n < N and μn � X N( ) for n ≥ N, and the
resulting birth-and-death process with birth rate λ and
death rate μn, can be solved to obtain relevant per-
formance measures, such as mean order flow times.

Our approach to model and analyze queueing
networks with blocking may be applied in many
applications beyond zone picking systems, for example,
end-of-aisle picking systems, AGV transportation sys-
tems, and vehicle-based compact storage systems.

References
Adan IJBF, Van der Wal J (2011) Mean values techniques. Boucherie R,

van Dijk N, eds. Queueing Networks: A Fundamental Approach
(Springer, New York), 561–586.

Balsamo S, De Nitto Personé V, Onvural R (2001)Analysis of Queueing
Networks with Blocking (Springer, Boston).

Baskett F, Chandy K, Muntz R, Palacios F (1975) Open, closed, and
mixed networks of queues with different classes of customers.
J. ACM 22(2):248–260.

Baynat B, Dallery Y (1993) A unified view of product-form ap-
proximation techniques for general closed queueing networks.
Performance Evaluation 18(3):205–224.

Bolch G, Greiner S, de Meer H, Trivedi KS (2006) Queueing Networks
and Markov Chains: Modeling and Performance Evaluation with
Computer Science Applications, 2nd ed. (Wiley-Interscience, Hobo-
ken, NJ).

Boucherie RJ (1998) Norton’s equivalent for queueing networks com-
prised of quasireversible components linked by state-dependent
routing. Performance Evaluation 32(2):83–99.

Chandy KM, Sauer CH (1980) Computational algorithms for product
form queueing networks. Comm. ACM 23(10):573–583.

Chandy KM, Herzog U,Woo L (1975) Parametric analysis of queuing
networks. IBM J. Res. Development 19(1):36–42.

Chao X, Miyazawa M (2000) Queueing networks with instantaneous
movements:Aunified approachbyquasi-reversibility.Adv.Appl.
Probab. 32(1):284–313.

De Koster M (1994) Performance approximation of pick-to-belt
orderpicking systems. Eur. J. Oper. Res. 72(3):558–573.

De Koster M, Le-Duc T, Roodbergen KJ (2007) Design and control of
warehouse order picking: A literature review. Eur. J. Oper. Res.
182(2):481–501.

Drury J (1988) Toward more efficient order picking. Technical Report
1, The Institute of Materials Management, Cranfield, UK.

Economou A, Fakinos D (1998) Product form stationary distributions
for queueing networks with blocking and rerouting. Queueing
Systems 30(3):251–260.

Gu J, Goetschalckx M, McGinnis LF (2010) Research on warehouse
design and performance evaluation: A comprehensive review.
Eur. J. Oper. Res. 203(3):539–549.

Henderson W, Taylor PG (2001) State-dependent coupling of qua-
sireversible nodes. Queueing Systems 37(1):163–197.

Hsieh YJ, Bozer YA (2005) Analytical modeling of closed-loop con-
veyors with load recirculation. Computational Science and Its
Applications - ICCSA 2005, Lecture Notes in Computer Science,
vol. 3483 (Springer, Berlin), 437–447.

Jia J, Heragu S (2009) Solving semi-open queuing networks.Oper. Res.
57(2):391–401.

Kelly FP (1979) Reversibility and Stochastic Networks, 1st ed. (Wiley,
Chichester, UK).

Le-Duc T, De Koster RMBM (2007) Travel time estimation and order
batching in a 2-block warehouse. Eur. J. Oper. Res. 176(1):374–388.

Melacini M, Perotti S, Tumino A (2010) Development of a framework
for pick-and-pass order picking system design. Internat. J. Adv.
Manufacturing Tech. 53(9):841–854.

Osorio C, Bierlaire M (2009) An analytic finite capacity queueing
network model capturing the propagation of congestion and
blocking. Eur. J. Oper. Res. 196(3):996–1007.

Papadopoulos HT, Heavey C, Browne J (1993) Queueing Theory in
Manufacturing Systems Analysis and Design (Chapman and Hall,
London).

Park BC (2012) Order picking: Issues, systems and models. Manzini R,
ed. Warehousing in the Global Supply Chain: Advanced Models, Tools
and Applications for Storage Systems, 1st ed. (Springer-Verlag,
London), 1–30.

Perros HG (1994)Queueing Networks with Blocking (Oxford University
Press, Inc., New York).

Petersen CG (2000) An evaluation of order picking policies for mail
order companies. Production Oper. Management 9(4):319–335.

Petersen CG (2002) Considerations in order picking zone configu-
ration. Internat. J. Oper. Production Management 22(7):793–805.

Pittel B (1979) Closed exponential networks of queues with satura-
tion: The Jackson-type stationary distribution and its asymptotic
analysis. Math. Oper. Res. 4(4):357–378.

Reiser M (1981) Mean-value analysis and convolution method for
queue-dependent servers in closed queueing networks. Perfor-
mance Evaluation 1(1):7–18.

Reiser M, Lavenberg SS (1980) Mean-value analysis of closed mul-
tichain queuing networks. J. ACM 27(2):313–322.

Schassberger R (1984) Decomposable stochastic networks: Some ob-
servations. Model. Performance Evaluation Methodology 60:135–150.

Schmidt LC, Jackman J (2000) Modeling recirculating conveyors with
blocking. Eur. J. Oper. Res. 124(2):422–436.

Stidham S Jr (2002) Analysis, design, and control of queueing sys-
tems. Oper. Res. 50(1):197–216.

van der Gaast JP, Adan IJBF, De Koster MBM (2018) Conveyor
merges in zone picking systems: A tractable and accurate ap-
proximate model. Transportation Sci. 52(6):1428–1443.

Van Dijk NM (1988) On Jackson’s product form with ”jump-over”
blocking. Oper. Res. Lett. 7(5):233–235.

Vanderlande (2007) Zone picking met VISION.ZPS. Product bro-
chure, Vanderlande, Veghel, Netherlands.

Walrand J (1983) A note on Norton’s theorem for queuing networks.
J. Appl. Probab. 20(2):442–444.

Whitt W (1982) Approximating a point process by a renewal process
I: Two basic methods. Oper. Res. 30(1):125–147.

Van der Gaast et al.: Capacity Analysis of Sequential Zone Picking Systems
178 Operations Research, 2020, vol. 68, no. 1, pp. 161–179, © 2019 INFORMS



Wolff RW (1989) Stochastic Modeling and the Theory of Queues, 1st ed.
(Prentice Hall, London).

Yao DD, Buzacott JA (1987) Modeling a class of flexible man-
ufacturing systems with reversible routing. Oper. Res. 35(1):
87–93.

Yu M, De Koster R (2008) Performance approximation and design
of pick-and-pass order picking systems. IIE Trans. 40(11):
1054–1069.

Yu M, De Koster R (2009) The impact of order batching and picking
area zoning on order picking system performance. Eur. J. Oper.
Res. 198(2):480–490.

Jelmer P. van der Gaast is an assistant professor in the
Department of Management Science at Fudan University,
Shanghai. His research interests include warehouse opera-
tions, stochastic processes, optimization, and queueing theory.

René B. M. de Koster is a professor of logistics and op-
erations management at Rotterdam School of Management,

Erasmus University. His research interests are warehousing,
terminal, and behavioral operations.

Ivo J. B. F. Adan is a full professor in the sections oper-
ations, planning, accounting and control (Department of
Industrial Engineering and Innovation Sciences) and
dynamics and control (Department of Mechanical Engi-
neering) at Eindhoven University of Technology and holds
the Manufacturing Networks Chair. His expertise and
tuition areas include probability theory/statistics, opera-
tions research, manufacturing networks, stochastic opera-
tions research, and queueing models.

Jacques A. C. Resing is an assistant professor in the sto-
chastic operations research group at Eindhoven University of
Technology. His research is, in general, focused on applied
probability and, in particular, on queueing theory. Among
others, he studies several polling systems, fluid queues, and
tandem queues.

Van der Gaast et al.: Capacity Analysis of Sequential Zone Picking Systems
Operations Research, 2020, vol. 68, no. 1, pp. 161–179, © 2019 INFORMS 179


	Capacity Analysis of Sequential Zone Picking Systems
	Introduction
	Single-Segment Zone Picking Systems
	Multisegment Zone Picking Systems
	Numerical Results
	Conclusion and Further Research


