143 research outputs found

    The Color Splitting System for TV Cameras - XYZ Prism

    Get PDF
    One of the dominant aspects, which prejudices the quality of color image reproduction, is the first operation in TV chain - scanning. Up to this day, the color splitting system, working in RGB colorimetric system, is still entirely used. The existence of negative parts of the color matching functions r(l), g(l), b(l) causes complications by optical separation of partial pictures R, G, B in classic scanning system. It leads to distortion of reproduction of color images. However, the specific technical and scientific applications, where the color carries the substantial part of information (cosmic development, medicine), demand high fidelity of color reproduction. This article submits the results of the design of the color splitting system working in XYZ colorimetric system (next only XYZ prism). Shortly the way to obtain theoretical spectral reflectances of partial filters of XYZ prism is described. Further, these filters are approximated by real optical interference filters and the geometry of XYZ prism is established. Finally, the results of the colorimetric distortion test of proposed scanning system are stated

    Functional Characterization of the Frost Gene in Drosophila melanogaster: Importance for Recovery from Chill Coma

    Get PDF
    BACKGROUND: Almost all animals, including insects, need to adapt to temperature fluctuations. The molecular basis of thermal adaptation is not well understood, although a number of candidate genes have been proposed. However, a functional link between candidate genes and thermal tolerance has rarely been established. The gene Frost (Fst) was first discovered when Drosophila flies were exposed to cold stress, but the biological function(s) of Fst has so far not been characterized. Because Fst is up-regulated after a cold stress, we tested whether it was essential for chill-coma recovery. METHODOLOGY/PRINCIPAL FINDINGS: A marked increase in Fst expression was detected (by RT-PCR) during recovery from cold stress, peaking at 42-fold after 2 h. The GAL4/UAS system was used to knock down expression of Fst and recovery ability was assessed in transgenic adults following 12 h of chill coma at 0 degrees C. The ability to recover from cold stress (short-, medium- and long-term) was significantly altered in the transgenic adults that had Fst silenced. These findings show that Fst plays an essential role in the recovery from chill coma in both males and females. CONCLUSIONS/SIGNIFICANCE: The Frost gene is essential for cold tolerance in Drosophila melanogaster and may play an important role in thermal adaptation

    Efficient Olfactory Coding in the Pheromone Receptor Neuron of a Moth

    Get PDF
    The concept of coding efficiency holds that sensory neurons are adapted, through both evolutionary and developmental processes, to the statistical characteristics of their natural stimulus. Encouraged by the successful invocation of this principle to predict how neurons encode natural auditory and visual stimuli, we attempted its application to olfactory neurons. The pheromone receptor neuron of the male moth Antheraea polyphemus, for which quantitative properties of both the natural stimulus and the reception processes are available, was selected. We predicted several characteristics that the pheromone plume should possess under the hypothesis that the receptors perform optimally, i.e., transfer as much information on the stimulus per unit time as possible. Our results demonstrate that the statistical characteristics of the predicted stimulus, e.g., the probability distribution function of the stimulus concentration, the spectral density function of the stimulation course, and the intermittency, are in good agreement with those measured experimentally in the field. These results should stimulate further quantitative studies on the evolutionary adaptation of olfactory nervous systems to odorant plumes and on the plume characteristics that are most informative for the ‘sniffer’. Both aspects are relevant to the design of olfactory sensors for odour-tracking robots

    Current Applications of Computational Chemistry in JACS

    Get PDF
    Article discussing molecules, mechanisms, and materials and current applications of computational chemistry in the Journal of the American Chemical Society (JACS)

    Computational Model of the Insect Pheromone Transduction Cascade

    Get PDF
    A biophysical model of receptor potential generation in the male moth olfactory receptor neuron is presented. It takes into account all pre-effector processes—the translocation of pheromone molecules from air to sensillum lymph, their deactivation and interaction with the receptors, and the G-protein and effector enzyme activation—and focuses on the main post-effector processes. These processes involve the production and degradation of second messengers (IP3 and DAG), the opening and closing of a series of ionic channels (IP3-gated Ca2+ channel, DAG-gated cationic channel, Ca2+-gated Cl− channel, and Ca2+- and voltage-gated K+ channel), and Ca2+ extrusion mechanisms. The whole network is regulated by modulators (protein kinase C and Ca2+-calmodulin) that exert feedback inhibition on the effector and channels. The evolution in time of these linked chemical species and currents and the resulting membrane potentials in response to single pulse stimulation of various intensities were simulated. The unknown parameter values were fitted by comparison to the amplitude and temporal characteristics (rising and falling times) of the experimentally measured receptor potential at various pheromone doses. The model obtained captures the main features of the dose–response curves: the wide dynamic range of six decades with the same amplitudes as the experimental data, the short rising time, and the long falling time. It also reproduces the second messenger kinetics. It suggests that the two main types of depolarizing ionic channels play different roles at low and high pheromone concentrations; the DAG-gated cationic channel plays the major role for depolarization at low concentrations, and the Ca2+-gated Cl− channel plays the major role for depolarization at middle and high concentrations. Several testable predictions are proposed, and future developments are discussed

    Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum.We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50)) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt(50) (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines.Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring

    Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons

    Get PDF
    The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains

    Statistical Coding and Decoding of Heartbeat Intervals

    Get PDF
    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems

    A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many temperate insects survive the harsh conditions of winter by undergoing photoperiodic diapause, a pre-programmed developmental arrest initiated by short day lengths. Despite the well-established ecological significance of photoperiodic diapause, the molecular basis of this crucial adaptation remains largely unresolved. The Asian tiger mosquito, <it>Aedes albopictus </it>(Skuse), represents an outstanding emerging model to investigate the molecular basis of photoperiodic diapause in a well-defined ecological and evolutionary context. <it>Ae. albopictus </it>is a medically significant vector and is currently considered the most invasive mosquito in the world. Traits related to diapause appear to be important factors contributing to the rapid spread of this mosquito. To generate novel sequence information for this species, as well as to discover transcripts involved in diapause preparation, we sequenced the transcriptome of <it>Ae. albopictus </it>oocytes destined to become diapausing or non-diapausing pharate larvae.</p> <p>Results</p> <p>454 GS-FLX transcriptome sequencing yielded >1.1 million quality-filtered reads, which we assembled into 69,474 contigs (N50 = 1,009 bp). Our contig filtering approach, where we took advantage of strong sequence similarity to the fully sequenced genome of <it>Aedes aegypti</it>, as well as other reference organisms, resulted in 11,561 high-quality, conservative ESTs. Differential expression estimates based on normalized read counts revealed 57 genes with higher expression, and 257 with lower expression under diapause-inducing conditions. Analysis of expression by qPCR for 47 of these genes indicated a high correlation of expression levels between 454 sequence data and qPCR, but congruence of statistically significant differential expression was low. Seven genes identified as differentially expressed based on qPCR have putative functions that are consistent with the insect diapause syndrome; three genes have unknown function and represent novel candidates for the transcriptional basis of diapause.</p> <p>Conclusions</p> <p>Our transcriptome database provides a rich resource for the comparative genomics and functional genetics of <it>Ae. albopictus</it>, an invasive and medically important mosquito. Additionally, the identification of differentially expressed transcripts related to diapause enriches the limited knowledge base for the molecular basis of insect diapause, in particular for the preparatory stage. Finally, our analysis illustrates a useful approach that draws from a closely related reference genome to generate high-confidence ESTs in a non-model organism.</p
    corecore