17 research outputs found

    Childhood Height Growth Rate Association With the Risk of Islet Autoimmunity and Development of Type 1 Diabetes

    Get PDF
    ContextRapid growth has been suggested to promote islet autoimmunity and progression to type 1 diabetes (T1D). Childhood growth has not been analyzed separately from the infant growth period in most previous studies, but it may have distinct features due to differences between the stages of development. Objective We aimed to analyze the association of childhood growth with development of islet autoimmunity and progression to T1D diagnosis in children 1 to 8 years of age.MethodsLongitudinal data of childhood growth and development of islet autoimmunity and T1D were analyzed in a prospective cohort study including 10 145 children from Finland, Germany, Sweden, and the United States, 1-8 years of age with at least 3 height and weight measurements and at least 1 measurement of islet autoantibodies. The primary outcome was the appearance of islet autoimmunity and progression from islet autoimmunity to T1D.ResultsRapid increase in height (cm/year) was associated with increased risk of seroconversion to glutamic acid decarboxylase autoantibody, insulin autoantibody, or insulinoma-like antigen-2 autoantibody (hazard ratio [HR] = 1.26 [95% CI = 1.05, 1.51] for 1-3 years of age and HR = 1.48 [95% CI = 1.28, 1.73] for >3 years of age). Furthermore, height rate was positively associated with development of T1D (HR = 1.80 [95% CI = 1.15, 2.81]) in the analyses from seroconversion with insulin autoantibody to diabetes.ConclusionRapid height growth rate in childhood is associated with increased risk of islet autoimmunity and progression to T1D. Further work is needed to investigate the biological mechanism that may explain this association.</p

    Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories

    Get PDF
    Development of islet autoimmunity precedes the onset of type 1 diabetes in children, however, the presence of autoantibodies does not necessarily lead to manifest disease and the onset of clinical symptoms is hard to predict. Here we show, by longitudinal sampling of islet autoantibodies (IAb) to insulin, glutamic acid decarboxylase and islet antigen-2 that disease progression follows distinct trajectories. Of the combined Type 1 Data Intelligence cohort of 24662 participants, 2172 individuals fulfill the criteria of two or more follow-up visits and IAb positivity at least once, with 652 progressing to type 1 diabetes during the 15 years course of the study. Our Continuous-Time Hidden Markov Models, that are developed to discover and visualize latent states based on the collected data and clinical characteristics of the patients, show that the health state of participants progresses from 11 distinct latent states as per three trajectories (TR1, TR2 and TR3), with associated 5-year cumulative diabetes-free survival of 40% (95% confidence interval [CI], 35% to 47%), 62% (95% CI, 57% to 67%), and 88% (95% CI, 85% to 91%), respectively (p < 0.0001). Age, sex, and HLA-DR status further refine the progression rates within trajectories, enabling clinically useful prediction of disease onset

    Islet Autoimmunity and HLA Markers of Presymptomatic and Clinical Type 1 Diabetes: Joint Analyses of Prospective Cohort Studies in Finland, Germany, Sweden, and the US

    Get PDF
    OBJECTIVETo combine prospective cohort studies, by including HLA harmonization, and estimate risk of islet autoimmunity and progression to clinical diabetes.RESEARCH DESIGN AND METHODSFor prospective cohorts in Finland, Germany, Sweden, and the U.S., 24,662 children at increased genetic risk for development of islet autoantibodies and type 1 diabetes have been followed. Following harmonization, the outcomes were analyzed in 16,709 infants-toddlers enrolled by age 2.5 years.RESULTSIn the infant-toddler cohort, 1,413 (8.5%) developed at least one autoantibody confirmed at two or more consecutive visits (seroconversion), 865 (5%) developed multiple autoantibodies, and 655 (4%) progressed to diabetes. The 15-year cumulative incidence of diabetes varied in children with one, two, or three autoantibodies at seroconversion: 45% (95% CI 40–52), 85% (78–90), and 92% (85–97), respectively. Among those with a single autoantibody, status 2 years after seroconversion predicted diabetes risk: 12% (10–25) if reverting to autoantibody negative, 30% (20–40) if retaining a single autoantibody, and 82% (80–95) if developing multiple autoantibodies. HLA-DR-DQ affected the risk of confirmed seroconversion and progression to diabetes in children with stable single-autoantibody status. Their 15-year diabetes incidence for higher- versus lower-risk genotypes was 40% (28–50) vs. 12% (5–38). The rate of progression to diabetes was inversely related to age at development of multiple autoantibodies, ranging from 20% per year to 6% per year in children developing multipositivity in ≤2 years or >7.4 years, respectively.CONCLUSIONSThe number of islet autoantibodies at seroconversion reliably predicts 15-year type 1 diabetes risk. In children retaining a single autoantibody, HLA-DR-DQ genotypes can further refine risk of progression.</div

    Metatranscriptomics and Pyrosequencing Facilitate Discovery of Potential Viral Natural Enemies of the Invasive Caribbean Crazy Ant, Nylanderia pubens

    Get PDF
    BACKGROUND: Nylanderia pubens (Forel) is an invasive ant species that in recent years has developed into a serious nuisance problem in the Caribbean and United States. A rapidly expanding range, explosive localized population growth, and control difficulties have elevated this ant to pest status. Professional entomologists and the pest control industry in the United States are urgently trying to understand its biology and develop effective control methods. Currently, no known biological-based control agents are available for use in controlling N. pubens. METHODOLOGY AND PRINCIPAL FINDINGS: Metagenomics and pyrosequencing techniques were employed to examine the transcriptome of field-collected N. pubens colonies in an effort to identify virus infections with potential to serve as control agents against this pest ant. Pyrosequencing (454-platform) of a non-normalized N. pubens expression library generated 1,306,177 raw sequence reads comprising 450 Mbp. Assembly resulted in generation of 59,017 non-redundant sequences, including 27,348 contigs and 31,669 singlets. BLAST analysis of these non-redundant sequences identified 51 of potential viral origin. Additional analyses winnowed this list of potential viruses to three that appear to replicate in N. pubens. CONCLUSIONS: Pyrosequencing the transcriptome of field-collected samples of N. pubens has identified at least three sequences that are likely of viral origin and, in which, N. pubens serves as host. In addition, the N. pubens transcriptome provides a genetic resource for the scientific community which is especially important at this early stage of developing a knowledgebase for this new pest

    AMIA Annual Symposium Proceedings 2021

    No full text
    The Collaborative Open Outcomes tooL (COOL) is a novel, highly configurable application to simulate, evaluate and compare potential population-level screening schedules. Its first application is type 1 diabetes (T1D) screening, where known biomarkers for risk exist but clinical application lags behind. COOL was developed with the T1DI Study Group, in order to assess screening schedules for islet autoimmunity development based on existing datasets. This work shows clinical research utility, but the tool can be applied in other contexts. COOL helps the user define and evaluate a domain knowledge-driven screening schedule, which can be further refined with data-driven insights. COOL can also compare performance of alternative schedules using adjusted sensitivity, specificity, PPV and NPV metrics. Insights from COOL may support a variety of needs in disease screening and surveillance.</p

    Defining AMIA\u27s artificial intelligence principles

    No full text
    Recent advances in the science and technology of artificial intelligence (AI) and growing numbers of deployed AI systems in healthcare and other services have called attention to the need for ethical principles and governance. We define and provide a rationale for principles that should guide the commission, creation, implementation, maintenance, and retirement of AI systems as a foundation for governance throughout the lifecycle. Some principles are derived from the familiar requirements of practice and research in medicine and healthcare: beneficence, nonmaleficence, autonomy, and justice come first. A set of principles follow from the creation and engineering of AI systems: explainability of the technology in plain terms; interpretability, that is, plausible reasoning for decisions; fairness and absence of bias; dependability, including safe failure ; provision of an audit trail for decisions; and active management of the knowledge base to remain up to date and sensitive to any changes in the environment. In organizational terms, the principles require benevolence-aiming to do good through the use of AI; transparency, ensuring that all assumptions and potential conflicts of interest are declared; and accountability, including active oversight of AI systems and management of any risks that may arise. Particular attention is drawn to the case of vulnerable populations, where extreme care must be exercised. Finally, the principles emphasize the need for user education at all levels of engagement with AI and for continuing research into AI and its biomedical and healthcare applications

    Childhood height growth rate association with the risk of islet autoimmunity and development of type 1 diabetes

    Get PDF
    Abstract Context: Rapid growth has been suggested to promote islet autoimmunity and progression to type 1 diabetes (T1D). Childhood growth has not been analyzed separately from the infant growth period in most previous studies, but it may have distinct features due to differences between the stages of development. Objective: We aimed to analyze the association of childhood growth with development of islet autoimmunity and progression to T1D diagnosis in children 1 to 8 years of age. Methods: Longitudinal data of childhood growth and development of islet autoimmunity and T1D were analyzed in a prospective cohort study including 10 145 children from Finland, Germany, Sweden, and the United States, 1-8 years of age with at least 3 height and weight measurements and at least 1 measurement of islet autoantibodies. The primary outcome was the appearance of islet autoimmunity and progression from islet autoimmunity to T1D. Results: Rapid increase in height (cm/year) was associated with increased risk of seroconversion to glutamic acid decarboxylase autoantibody, insulin autoantibody, or insulinoma-like antigen-2 autoantibody (hazard ratio [HR] = 1.26 [95% CI = 1.05, 1.51] for 1-3 years of age and HR = 1.48 [95% CI = 1.28, 1.73] for &lt;3 years of age). Furthermore, height rate was positively associated with development of T1D (HR = 1.80 [95% CI = 1.15, 2.81]) in the analyses from seroconversion with insulin autoantibody to diabetes Conclusion: Rapid height growth rate in childhood is associated with increased risk of islet autoimmunity and progression to T1D. Further work is needed to investigate the biological mechanism that may explain this association

    Progression of type 1 diabetes from latency to symptomatic disease is predicted by distinct autoimmune trajectories

    No full text
    Development of islet autoimmunity precedes the onset of type 1 diabetes in children, however, the presence of autoantibodies does not necessarily lead to manifest disease and the onset of clinical symptoms is hard to predict. Here we show, by longitudinal sampling of islet autoantibodies (IAb) to insulin, glutamic acid decarboxylase and islet antigen-2 that disease progression follows distinct trajectories. Of the combined Type 1 Data Intelligence cohort of 24662 participants, 2172 individuals fulfill the criteria of two or more follow-up visits and IAb positivity at least once, with 652 progressing to type 1 diabetes during the 15 years course of the study. Our Continuous-Time Hidden Markov Models, that are developed to discover and visualize latent states based on the collected data and clinical characteristics of the patients, show that the health state of participants progresses from 11 distinct latent states as per three trajectories (TR1, TR2 and TR3), with associated 5-year cumulative diabetes-free survival of 40% (95% confidence interval [CI], 35% to 47%), 62% (95% CI, 57% to 67%), and 88% (95% CI, 85% to 91%), respectively (p < 0.0001). Age, sex, and HLA-DR status further refine the progression rates within trajectories, enabling clinically useful prediction of disease onset
    corecore