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Progression of type 1 diabetes from latency to
symptomatic disease is predicted by distinct
autoimmune trajectories
Bum Chul Kwon 1,10✉, Vibha Anand 1,10, Peter Achenbach 2, Jessica L. Dunne 3, William Hagopian 4,

Jianying Hu 5, Eileen Koski 5, Åke Lernmark 6, Markus Lundgren 6, Kenney Ng 1, Jorma Toppari 7,

Riitta Veijola 8, Brigitte I. Frohnert9 & the T1DI Study Group*

Development of islet autoimmunity precedes the onset of type 1 diabetes in children, how-

ever, the presence of autoantibodies does not necessarily lead to manifest disease and the

onset of clinical symptoms is hard to predict. Here we show, by longitudinal sampling of islet

autoantibodies (IAb) to insulin, glutamic acid decarboxylase and islet antigen-2 that disease

progression follows distinct trajectories. Of the combined Type 1 Data Intelligence cohort of

24662 participants, 2172 individuals fulfill the criteria of two or more follow-up visits and IAb

positivity at least once, with 652 progressing to type 1 diabetes during the 15 years course of

the study. Our Continuous-Time Hidden Markov Models, that are developed to discover and

visualize latent states based on the collected data and clinical characteristics of the patients,

show that the health state of participants progresses from 11 distinct latent states as per three

trajectories (TR1, TR2 and TR3), with associated 5-year cumulative diabetes-free survival of

40% (95% confidence interval [CI], 35% to 47%), 62% (95% CI, 57% to 67%), and 88%

(95% CI, 85% to 91%), respectively (p < 0.0001). Age, sex, and HLA-DR status further refine

the progression rates within trajectories, enabling clinically useful prediction of disease onset.
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Recent advances in type 1 diabetes research have increased
appreciation of heterogeneous patterns of islet auto-
immunity before a diagnosis of clinical diabetes. Previous

research points to two distinct pathways from the appearance of
islet autoimmunity to clinical diabetes, i.e. associated with initial
development of islet autoantibodies (IAb) to either insulin (IAA)
or glutamic acid decarboxylase (GADA)1. There is evidence that
these pathways may be triggered by pathogenic exposures, with
differential associations for intestinal viruses or prenatal
exposures2–4. Further, there are observed differences in both
genetic associations and expansion from initial IAb to multiple
autoantibodies and risk of progression to diabetes based on the
pattern of autoantibody acquisition3,5–7.

While the number of observed IAb predicts risk for progres-
sion to type 1 diabetes, the temporal progression of these bio-
markers displays heterogeneous patterns and could further
stratify risk7–11. Previous observations underscore the need to
better define individual trajectories from islet autoimmunity to
type 1 diabetes12. Better identification and understanding of the
heterogeneity of the disease may have substantial implications for
elucidation of its etiology. Further, the ability to predict diabetes
risk, progression rate, and intervention response may enable
personalized therapeutic approaches.

To better understand these patterns, we investigated the pre-
sence or absence of three islet autoantibodies, GADA, IAA, and
islet antigen-2 (IA-2A), prior to clinical diabetes in a large cohort
of data combined from five prospective studies in four countries.
Using an unsupervised machine learning approach, we generated
quantitative descriptions of underlying progression patterns from
islet autoimmunity to diagnosis of type 1 diabetes and utilized
novel visualization strategies to gain new insights into differences
between individuals in these trajectories.

Results
Three trajectories. Continuous-Time Hidden Markov Models
(CT-HMMs) were learned as disease progression models (DPM)
based on presence or absence of IAb from the longitudinal T1DI
study cohort. Using machine learning methods, a model con-
taining 11 latent states was discovered that best fit the observed
data and was subsequently applied to all IAb positive participants
to draw the insights presented here. For the 643 diagnosed (D)
participants, the discovered states formed three trajectories, TR1,
TR2, and TR3, each characterized by a distinct sequence of latent
states (Fig. 1a), which were further explored using interactive data
visualization and statistical analysis.

In this figure, each latent state is described by a set of
probabilities for presence of each IAb (Fig. 1a). Longitudinal
observation sequences of participants with IAb positivity were
labeled using the model, and these participants were then divided
into those who developed type 1 diabetes (Diagnosed/D) during
the study period vs. those who did not or were lost to follow-up
(Undiagnosed/UD). Statistical analyses correlated these latent
states and resulting trajectories with other study variables to draw
insights from all participants with IAb positivity about each of
these two groups.

Diagnosed participants. As shown in Fig. 1a, each trajectory
starts with an initial state with low IAb probability (TR1-0, TR2-
0, TR3-0), indicating most diagnosed individuals begin without
any positive IAb. After the initial state with low probability, a
unique sequence of IAb progression follows in each trajectory.
Participants in TR1-0 progress to TR1-1, which has a high
probability of multiple IAb positivity: GADA (0.93), IAA (0.62),
and IA-2A (0.94) followed by TR1-2, which has 100% IA-2A
positivity and loss of GADA (0.16) and IAA (0.04).

In trajectory TR2, participants added a single IAb at a time,
most typically in the following order: IAA (0.86) in TR2-1, and
IA-2A (0.98) in TR2-2. While almost all had acquired GADA
(0.99) in TR2-3, there was a subset of individuals who were
already positive for GADA in TR2-1 (0.58) or TR2-2 (0.26). Some
individuals then progressed to the multiple positive antibody state
TR2-3 (GADA 0.99, IAA 0.96, and IA-2A 1.0) and then to TR2-4,
where they lost IAA (0.08) while maintaining a high probability
of GADA (0.97) and certainty of IA-2A (1.00).

Similarly, most participants in trajectory TR3 added IAb in
series as follows: GADA (0.98) in TR3-1, and IA-2A (1.00) in
TR3-2 (multiple IAb positive). A minority were positive for IAA
in TR3-1 (0.21), but most were no longer IAA positive in TR3-3
(0.07).

For those diagnosed (Fig. 2a), TR3 shows a later onset of islet
autoimmunity than the other trajectories, with a median TR3-1
entry age of 3.3 years, compared to TR1-1 (2.5 years) and TR2-1
(1.3 years). The diagnosed participants in TR2 stay in the first
three states (TR2-0, TR2-1, TR2-2) briefly, as illustrated by the
widths of the respective state nodes in Fig. 2a. The diagnosed
participants in TR2 were diagnosed at states ranging from TR2-1
to TR2-4, among which the numbers were fairly evenly
distributed, while those in TR1 had a higher diagnosis rate in
state TR1-1 and those in TR3 were disproportionately diagnosed
in the final state, TR3-2, i.e., after gaining IA-2A as an additional
autoantibody.

Undiagnosed participants. The 1502 undiagnosed (UD) parti-
cipants (Fig. 1b) followed three trajectories - TR1(483), TR2
(257), and TR3 (762). Of the undiagnosed, 628 (42%) transi-
tioned to IAb positive states from initial states; the rest stayed in
IAb negative states, i.e., TR1-0, TR2-0, and TR3-0. Median entry
age of the undiagnosed into IAb positive states is higher than that
of the diagnosed participants for all states (Fig. 2b). For more
details about trajectories, see Supplementary Discussion in Sup-
plementary Information.

Islet autoantibody pattern by age and trajectory. As specific IAb
patterns could exist in more than one trajectory, we examined the
composition of trajectories amongst the seven possible IAb pat-
terns across ages 2–7 years (Fig. 3a–f). We showed that for all but
one pattern, the majority of individuals with that pattern were in
a single dominant trajectory. For the single antibody positive
patterns, proportions higher than 60% across these ages consisted
of: TR3 for GADA+ only (Fig. 3a), TR2 for IAA+ only (Fig. 3b),
and TR1 for IA-2+ only (Fig. 3c). Among patterns with two IAb
positive, both the GADA+ /IAA+ and the IAA+ /IA-2A+
patterns showed TR2 as a dominant trajectory (Fig. 3d, f,
respectively).

Interestingly, GADA+ /IA-2A+ patterns showed that the
dominant trajectory changes depending on participants’ age: TR1
for ages 2–3, TR1 and TR3 for ages 3–4, and TR3 for ages
4–7 years (Fig. 3e). Participants who had three positive IAb
belonged to TR2 more than other trajectories for all ages ≥ 3 years
(Fig. 3g).

Mean age at confirmed seroconversion and clinical onset. The
three trajectories showed significant differences in mean age at
seroconversion and diagnosis (Table 1 and Supplementary Fig. 5).
Among the diagnosed (n= 546), those in TR3 seroconverted
significantly later (F(2, 543)= 27.19, p < 0.0001) than those in
TR1 (p= 0.001) who seroconverted later than those in TR2
(p= 0.001). Among the undiagnosed (n= 840), those in
TR3 seroconverted significantly later (p < 0.0001) than in TR1;
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however, no significant differences were seen for seroconversion
age between TR1 and TR2 or TR2 and TR3.

Among the diagnosed, participants in TR3 were significantly
older (F(2, 640)= 24.99, p < 0.0001) than those in TR1 and TR2
at the time of diagnosis. Among the diagnosed, the age gap
between confirmed seroconversion and clinical onset was longest
for TR3 (F(2, 543)= 8.93, p= 0.0002) compared to TR1
(p= 0.001) and TR2 (p= 0.037), while there was no significant
difference between TR1 and TR2 (Table 1).

Sex and HLA-DR category. Trajectory distributions by sex
(Table 1) marginally differed across trajectories between diag-
nosed and undiagnosed (X2(5, n= 2145)= 10.59, p= 0.0602).
The pairwise comparison shows that diagnosed participants in
TR3 had a higher ratio of females to males in comparison to the
diagnosed participants in TR1 (p= 0.0105) and the diagnosed

participants in TR2 (p= 0.0161). No other pairs of trajectory/
diagnosis groups showed statistically significant differences in the
ratio of female to male participants.

Finally, HLA-DR risk groups differed across trajectories
between diagnosed and undiagnosed (X2(15, n= 2145)
= 161.53, p < 0.0001) (Table 1). The Chi-square test shows
significant differences in the proportion of four HLA-DR risk
groups among all groups of trajectories and diagnosis. Nine
combinations of pairwise comparisons between the undiagnosed
and the diagnosed in three trajectories all showed significant
differences in the proportions of HLA-DR risk groups (all,
p < 0.0001). The undiagnosed in TR1 were different from the
undiagnosed in TR2 (p= 0.0004) and TR3 (p= 0.0015).

Complete results of the pairwise Chi-square tests for sex and
HLA-DR are in Supplementary Tables 1 and 2, respectively, in
the Supplementary Information.

Fig. 1 Three data-driven islet autoantibody trajectories towards type 1 diabetes. The three trajectories discovered by the 11-state Hidden Markov model
for (a) Diagnosed (D, 643 participants who were diagnosed with type 1 diabetes) and (b) Undiagnosed (UD, 1502 participants who were not diagnosed
with type 1 diabetes during follow-up). Probabilities of islet autoantibody positivity for each of the 11 states are described in the table on the left, showing
probabilities of each islet autoantibody for each state in text and color (heat map scale: green: 0, red: 1). Waterfall diagrams on right show visits (dots),
HMM states (y-axis & color) of participants over time in years (x-axis). The three trajectories were characterized with respect to their first islet
autoantibody positive states, respectively: TR1 Predominantly Multiple IAb first (256 P, 483 NP); TR2 Predominantly IAA first (273 P, 257 NP); TR3
Predominantly GADA first (114 P, 762 NP). Source data are provided as a Source Data file.
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Survival analysis. Of the 2145 participants analyzed in both
groups, 1241 (58%) had at least one follow-up visit after the initial
IAb positive state (TR1-1, TR2-1, TR3-1). Survival analysis
(Fig. 4) showed differences in progression to type 1 diabetes
among trajectories after entry into initial IAb positive states.
Participants in TR1 progress faster to diabetes than those in TR2,
who progress faster than those in TR3 (Fig. 4, p < 0.0001). Post-
hoc analysis showed significant differences in all pairwise com-
parisons between trajectories (p < 0.0001). The 5-year cumulative
diabetes-free survival rates are significantly different (all pairwise
differences, p < 0.0001): TR1 (mean= 40%; 95% Confidence
Interval [CI]: 35 % to 47%), TR2 (mean= 62%; 95% CI: 57% to

67%), TR3 (mean= 88%; 95% CI: 85% to 91%). Of note, the
mean ages of initial entrance to IAb positive states were sig-
nificantly different overall (p < 0.0001); however, pairwise com-
parisons showed that while mean entry age in TR3 was later than
TR1 (p < 0.0001) and TR2 (p < 0.0001), there was no difference in
age of entry between TR1 and TR2 (p= 0.0728).

The survival curves stratified on sex are provided in
Supplementary Fig. 3. Females in TR2 showed faster progression
and lower rates of type 1 diabetes-free survival than males
(Z2(1)= 5.7, p= 0.02). There was no significant difference
between sexes in TR1 (Z2(1)= 0.3, p= 0.6) or TR3
(Z2(1)= 2.3, p= 0.1).

Fig. 2 State transition diagram for diagnosed and undiagnosed participants in the three trajectories. State transition diagram for D Diagnosed (a) and
UD Undiagnosed (b). The table on left again shows probability of positivity for each islet autoantibody, total number of individuals in each state, median
entry age (years) per state, number of individuals who are diagnosed (D) or lost in observation (UD) per each state and median age of type 1 diabetes
diagnosis or last observation (years) for D and UD, respectively. Figure on right shows (i) how many participants enter each state (left-sided entry arrow);
(ii) how many participants were diagnosed (D) or ended their observation (UD) at each state (right-sided exit arrow); (iii) how many participants
progressed into subsequent states (diagonal transition arrow); (iv) how many participants are in each state (number in box). Each rectangle indicates
median ages at the first (left side) and last (right side) observations at each state in years of age on the x-axis. Source data are provided as a Source
Data file.
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The survival curves stratified on HLA-DR status are provided in
Supplementary Fig. 4. Survival analysis stratified on HLA-DR status
showed no difference in progression between individuals with DR3/
4 vs. DR4/X in TR1. In both TR2 and TR3, individuals with DR3/4
progressed faster than those with DR4/X (p= 0.003, p= 0.0041).

To examine the role of age in progression rates for each
trajectory, we separated participants by median age of entry into

first IAb positive state (3.75 years). Of note, for TR1-1, there was no
difference in survival rates between participants entering the
multiple islet autoantibody states before or after the overall median
age of entry into first IA positive state (Z2(1)= 1.6, p= 0.2)
(Fig. 5a). In contrast, participants who entered the first islet
autoantibody positive states in TR2 and TR3 did show differences
in survival rates by age. Participants entering IAA positive state

Fig. 3 Proportion of participants in the three trajectories given islet autoantibody pattern and age. Proportion (y-axis) of participants with each of seven
possible IAb patterns (a–g) belonging to each trajectory (TR1: green, TR2: red, TR3: purple) over the ages between 2 and 7 (x-axis). Tables under each
panel show the number of subjects who had the given IAb pattern at each corresponding age. Source data are provided as a Source Data file.

Table 1 Distribution of undiagnosed and diagnosed participants in three trajectories over sex and HLA.

Undiagnosed Diagnosed

TR1(n= 483) TR2
(n= 257)

TR3
(n= 762)

TR1
(n= 256)

TR2
(n= 273)

TR3
(n= 114)

Sex
Male 283 (59%) 145 (56%) 409 (54%) 155 (61%) 146 (53%) 52 (46%)
Female 200 (41%) 112 (44%) 353 (46%) 101 (39%) 127 (47%) 62 (54%)

HLA-DR status

DR3/4 73 (15%) 48 (19%) 141 (19%) 93 (36%) 106 (39%) 41 (36%)
DR4/X 298 (62%) 140 (54%) 421 (55%) 139 (54%) 138 (51%) 55 (48%)
DR3/X 70 (14%) 23 (9%) 85 (11%) 15 (6%) 19 (7%) 16 (14%)
DRX/X 42 (9%) 45 (18%) 112 (15%) 9 (4%) 10 (4%) 2 (2%)
Unknown 0 (0%) 1 (0%) 3 (0%) 0 (0%) 0 (0%) 0 (0%)

Age of seroconversion 5.38 ± .51 6.28 ± .64 6.93 ± .38 3.48 ± .41 2.52 ± .25 4.71 ± .59
Age of diagnosis – – – 7.64 ± .52 7.11 ± .54 10.46 ± .69

Distribution of undiagnosed and diagnosed participants in three trajectories over sex and HLA-DR status; age (mean ± standard deviation) of seroconversion and diagnosis for undiagnosed and diagnosed
participants.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28909-1 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:1514 | https://doi.org/10.1038/s41467-022-28909-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


(TR2-1) earlier than 3.75 years old progressed faster to type 1
diabetes than those entering later (Z2(1)= 19.1, p < 0.0001) (Fig. 5b).
Similarly, participants entering GADA positive state (TR3-1) before
3.75 years old progressed faster to type 1 diabetes than those
entering later (Z2(1)= 6, p= 0.01) (Fig. 5c).

Entry into three distinct trajectory states, namely TR1-1, TR2-
4, and TR3-2, describe a pattern of high probabilities of GADA
and IA-2A positivity, despite similar IAb patterns in each of these
states, survival curves showed significant differences in diabetes-
free survival rates from those states (Z2(2)= 34.1, p < 0.0001).
Post-hoc analysis showed significant differences between TR3-2
and TR1-1 (p < 0.0001) and between TR3-2 and TR2-4
(p= 0.007) (Fig. 5d). TR3-2 showed significantly slower and less
frequent progression to type 1 diabetes than TR1-1 and TR2-4.
Mean entry ages for GADA and IA-2A positive states in the three
trajectories were significantly different (F(2, 516)= 41.19,
p < 0.0001). Tukey HSD test confirmed the mean entry age for
TR1-1 as significantly younger than for TR2-4 or for TR3-2.
There was no difference in entry age between TR2-4 and TR3-2.

Discussion
In this study, we discovered 11 latent states of progression to type
1 diabetes onset using data-driven modeling based on long-
itudinal IAb data. The latent states described three distinct tra-
jectories of disease progression, using an unbiased, probabilistic
method and characterized the autoimmune pathways to devel-
opment of clinical type 1 diabetes. Our descriptions of the
dynamic nature of the three trajectories corroborate and expand
recent observations from multiple studies1,3,5–7,13. The descrip-
tions illustrate the heterogeneous journey of participants defined
not just by their first IAb observed but rather by the transitions
between probabilistic states of autoantibodies as they age. Our
findings suggest age at seroconversion and subsequent progres-
sion to type 1 diabetes onset differs significantly among three
trajectories. Despite following similar trajectories of IAb patterns,
the diagnosed and undiagnosed participants show differences by
age, sex, and HLA-DR, at least in the 15 years of follow-up stu-
died. Our longitudinal analysis underscores the necessity of

follow-up beyond cross-sectional description of islet autoantibody
positivity as it may not be sufficient to understand an individual’s
journey towards diagnosis of type 1 diabetes.

The three trajectories found in the present investigation show
distinctive progression patterns. The observation that females
progress faster than males in TR2 may be related to a more
aggressive pathogenesis with age as females tend to be diagnosed
with type 1 diabetes earlier than males14. The present study
discovered underlying subtypes based on three trajectories that
could be important in selecting research participants for clinical
intervention trials through data-driven modeling. The visual
analytic methodology used in this study can be a powerful tool to
explore trajectories and to interact with individual-level data,
including factors that may vary by location, which could advance
clinical research and practice.

The study provides important implications for screening in
routine clinical practice, a possibility that is being explored in
population screening studies15,16. Clinicians may use IAb pattern
and age to estimate the trajectory and therefore the risk for
developing type 1 diabetes. In other words, our findings show the
proportion of participants belonging to a specific trajectory given
their age and IAb positivity. Once a likely trajectory is identified,
one could examine the preceding and upcoming states for the
trajectory, and estimate the type 1 diabetes-free survival of the
participants in the trajectory, given their age and IAb positivity.

Another strength of this study is the large number of partici-
pants followed from an early age until the appearance of one or
more islet autoantibodies. The harmonized data in this interna-
tional effort not only made it possible to identify and visualize
three distinct trajectories but also enabled researchers to examine
the impact of different contributing factors specific to the envir-
onments of the participants. This approach can also be a valuable
addition to available recruitment tools to identify research par-
ticipants for secondary prevention trials in a variety of settings.
Additionally, this study demonstrates the advantages of using
interactive visualizations to characterize trajectories and explore
data from individuals. By visually representing both the granu-
larity of individual data and the overall patterns of change over
time, this method could be combined with other variables to
explore new relationships between observational data and iden-
tified trajectories. A novel and hitherto uncharted possibility is
the ability of visualization not only to delineate groups but also to
distinctly follow individuals within trajectories. In clinical appli-
cations, this tool may thus have the potential to allow better
counseling for individuals and families by providing an improved
understanding of likely progression.

Intervention studies have shown differences in response to
disease-modifying treatments based on stage of the disease5,17,18,
as well as heterogeneity in response amongst participants19.
Machine learning models of disease progression combined with
interactive visualization tools reveal novel trajectories and enable
the requisite increase in granularity needed to support precision
medicine approaches to prevention and modulation of disease
progression. Future work will include the development of a more
directed tool for clinical practice, allowing assessment of an
individual patient’s progression pattern in the context of popu-
lation pathways. Future work could also assess the impact of
varying genetic backgrounds. By using such information, we can
improve our understanding of varying clinical pathways, better
utilize resources, and recruit participants following similar disease
pathways for clinical interventions.

Methods
Participants. The Type 1 Diabetes Intelligence (T1DI) cohort includes 24,662
participants from five prospective studies (DAISY20, DiPiS21, DIPP22, DEW-IT23,
BABYDIAB24) of individuals at increased risk for type 1 diabetes, recruited before

Fig. 4 Diabetes-free survival stratified by the three trajectories. T1D-free
survival curves (mean and 95% confidence interval) of the three
trajectories starting at first entry into IAb positive state (TR1-1, green; TR2-
1, red; TR3-1, purple). Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28909-1

6 NATURE COMMUNICATIONS |         (2022) 13:1514 | https://doi.org/10.1038/s41467-022-28909-1 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


age 25 years based on high-risk HLA genotype or history of first-degree relative
with type 1 diabetes. Presence or absence of three islet autoantibodies, GADA, IAA,
and IA-2A, were combined across studies, and data were included up to a follow up
of 15 years or until the diagnosis of type 1 diabetes, whichever came first, per
originating study protocols. Type 1 diabetes was diagnosed according to American
Diabetes Association criteria25, seroconversion by two consecutive visits with at
least one IAb persistently positive at both visits and seroconversion age as the first
of the two visits. In addition to IAb measurements and outcome of diagnosis, the
T1DI cohort contains anthropometric, metabolic, diet, and environmental mea-
surements. All uses of human materials from the individual studies - BABYDIAB,
DAISY, DEW-IT, DiPiS, and DIPP were each approved by their relevant ethics
review boards: (i) BABYDIAB by the Bavarian ethical committee (Bayerische
Landesärztekammer; No. 95357); (ii) DAISY by the Colorado Multiple Institutional
Review Board (COMIRB; COMIRB 92-080); (iii) DEW-IT by WIRB-Copernicus
Group Institutional Review Board (WCG-IRB; DSHS Project B-092199-H); (iv)
DiPiS by the regional ethics board in Lund Sweden (Dnr LU-490-99); Joint
Municipal Authority of Northern Ostrobothnia Hospital District, Regional Ethics
Committee, Finland. All data and samples were collected under the written
informed consent of the participants or their legal parents or guardians.

Modeling analysis. Using a probabilistic approach26, incorporating Continuous-
Time Hidden Markov Model (CT-HMM)27, we trained disease progression models
(DPM) on presence or absence of IAb and the age of participants. The DPMs
discovered latent states from longitudinal measurements of the three IAbs from
each participant’s visit and the age of the participant at the visit (Supplementary
Table 3 and Supplementary Fig. 6 for examples of the observational data)28. Fur-
ther analyses correlated latent states and resulting trajectories with other study
variables.

The DPM were generated in an unsupervised way, meaning type 1 diabetes
diagnoses were not used to inform model parameters29. To produce robust results,
model parameters (for CT-HMM) were learned in 1900 repeated experiments in
total: 100 sub-samples (bootstrapping) × 19 different latent state models, exploring
possible numbers of latent states ranging from 2 to 20-state models. For each latent
state model experiment, we randomly split data in the ratio of 70:30 (training: held-
out validation test) for model training and model validation29. In the random split,
each participant’s entire visit history could either belong to the training set or the
test set, but not both, thus creating random sub-samples of the observed data. In
each experiment, the model parameters for each of the 19 possible models with a
number of latent states ranging from 2 to 20 were discovered from the time-

Fig. 5 Diabetes-free survival stratified by age and trajectory state. T1D-free survival curves (mean and 95% confidence interval) of participants before or
after median age, 3.75 years old, of entry into first IAb positive state (a TR1-1, b TR2-1, and c TR3-1). d T1D-free survival curves for individuals in GADA and
IA-2 positive states (TR1-1, green; TR2-4, orange; TR3-2, purple). The median ages of entrance for GADA and IA-2A positive states were (i) TR1-1: 3.0; (ii)
TR2-4: 7.6; (iii) TR3-2: 7.1 years old. Source data are provided as a Source Data file.
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stamped (age at visit) observational data (training set) consisting of the IAbs. The
CT-HMM parameters (transition and emission probabilities) were learned by
maximum likelihood estimation using the Expectation-Maximization (EM)
algorithm iteratively till convergence and the number of iterations were empirically
determined based on computed likelihood in each iteration. At convergence, the
trained model assigned a latent state number to each participant visit (indexed by
age) in the training set. Similarly, the participant visits in the held-out test set were
assigned a model (latent) state number or “labeled” in these experiments26. We also
calculated the (predictive) log-likelihood of observed data given the model using
the held-out set. The predictive log-likelihood was used to select the best model we
use for the analysis in the manuscript.

To learn a robust model for disease progression, we only included participants
eventually diagnosed with type 1 diabetes (within 15 years of follow-up) and who
had three or more visits during the follow-up period. Additionally, the model was
learned using data from only three T1DI studies (DAISY, DIPP, DiPiS) (n= 559)
for whom data were available at the time of model development. Later,
independent model validation was done using participants from two other studies
(BABYDIAB, DEW-IT) (n= 150). Since, we performed 1900 experiments, each
generating a possible disease progression model (of 2 to 20 latent states), we needed
to select a model based on the best fit among the latent states. To find the best
model fit among the latent states explored, we computed the Bayesian Information
Criterion (BIC) score30. BIC penalizes model overfit (i.e. number of model
parameters to learn given the number of latent states and the number of
observations required for training). We selected the most probable model from a
set of competing models having minimal BIC scores (latent state model 11, 12, 13)
and the highest value for predictive log-likelihood (calculated based on a held-out
test set during the learning process).

The final model contains 11 latent states representing the observed islet
autoimmunity development of diagnosed participants from the T1DI cohort. It was
used to draw insights from all participants with IAb positivity in the analysis
cohort, i.e., irrespective of their diagnosis. Longitudinal observations of participants
were labeled using the model for further analysis. Specifically, the 11-state was used
to label each participant’s visit with one of the 11 states using an index ranging
from 0 to 10. The results show that most participants started and ended their
observations within one out of three trajectories: Trajectory 1 consists of three
states (0,1,2), starting from the state “0”; Trajectory 2 consists of five states
(3,4,5,6,7), starting from state “3”; Trajectory 3 consists of three states (8,9,10),
starting from the state “8”, as Supplementary Fig. 7 illustrates. The analysis of state
characteristics revealed that the starting states 0 (TR1-0), 3 (TR2-0), and 8 (TR3-0)
were characterized by low probabilities of antibody positivity (Figs. 1 and 2 in the
manuscript). As the manuscript describes, each trajectory is characterized by the
first state with autoantibody positivity, such as multiple islet autoantibodies
(Trajectory 1), IAA (Trajectory 2), GADA (Trajectory 3). To clearly describe the
distinct patterns of the three trajectories in the manuscript, we renamed the
11 states to the {Trajectory Name—Step within Each Trajectory} format, e.g., TR1-
1, in the manuscript. In this way, readers can recognize which trajectory and which
step a participant’s visit belongs to by the name. These participants’ data were then
divided into those who developed type 1 diabetes (Diagnosed/D) during the study
period vs. those who did not, or were lost to follow-up, (Undiagnosed/UD).

Analysis cohort. We studied 2172 individuals from the T1DI cohort with one or
more IAb measurements at or before the age of 2.5 years and at least one positive
IAb measurement during participation, identified as “diagnosed” (n= 652), or
“undiagnosed” (n= 1520), based on the diagnosis status at their last observation.
The median age at participants’ last observation were 7.62 and 12.87 years for the
diagnosed and undiagnosed, respectively (see Supplementary Fig. 2 in Supple-
mentary Information for further detail). On visualization, T1DI-DPM discovered
three trajectories, which uniquely fit all but 27 participants (1.2%, nine diagnosed,
18 undiagnosed), who could possibly fit into two different trajectories. After
eliminating these 27 individuals, our analytic cohort included 2145 participants
(98.8%, 643 diagnosed, 1502 undiagnosed). A flow chart of the cohort selection
process and criteria is in Supplementary Fig. 1 in Supplementary Information.

The data that support the findings of this study are available on request from
the corresponding author B.K. The data are not publicly available due to privacy
concerns.

Analysis methods. We used an interactive visualization method called DPVis29 to
discover and characterize trajectories in the IAb positive participants by enabling
visual identification and analysis of patterns of IAb trajectories. Using the visually
discovered trajectories as boundaries for groups, we performed a one-way, two-
sided ANOVA followed by Tukey HSD for statistical differences in age at ser-
oconversion and age at diabetes onset. Two-sided Chi-Square test was used to
examine the relationship between trajectories and participant characteristics, spe-
cifically HLA-DR status and sex. We performed Kaplan–Meier survival analysis
and tested differences in type 1 diabetes-free survival rates between trajectories
using the two-sided log-rank test. We then compared the survival rates within each
trajectory before or after median age of entry into first IAb state, and finally
compared the survival rates after entering GADA and IA-2A positive states in each
trajectory.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw data in this study have been separated and deposited in each of the five study
groups: DiPiS, BABYDIAB, DIPP, DEW-IT, and DAISY. The raw data are protected and
are not publicly available due to data privacy laws. The source data for figures generated
in this study are provided in the Source Data file. All other data that support the findings
of this study are included in Supplementary Information or can be made available upon
reasonable request. Source data are provided with this paper.

Code availability
The code to generate the waterfall diagram is deposited in the following repository
(https://github.com/bckwon/dpvis-waterfall). All other figures can be generated using
any standard charting library.
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