53 research outputs found

    Face masks to prevent transmission of respiratory infections : Systematic review and meta-analysis of randomized controlled trials on face mask use

    Get PDF
    Funding Information: The Strategic Research Council, Academy of Finland, 340551, LL. The Strategic Research Council, Academy of Finland, 340539, HMO. Publisher Copyright: Copyright: © 2022 Ollila et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Objectives To examine the use of face mask intervention in mitigating the risk of spreading respiratory infections and whether the effect of face mask intervention differs in different exposure settings and age groups. Design Systematic review and meta-analysis. We evaluated the risk of bias using the Cochrane Risk of Bias 2 tool (ROB2). Data sources We searched PubMed, Embase, Cochrane Central Register of Controlled Trials, and Web of Science were searched for randomized controlled trials investigating the effect of face masks on respiratory infections published between 1981 and February 9, 2022. We followed the PRISMA 2020 guidelines. Eligibility criteria for selecting studies We included randomized controlled trials investigating the use of face mask intervention in mitigating the risk of spreading respiratory infections across different exposure settings. Results We identified 2,400 articles for screening. 18 articles passed the inclusion criteria for both evidence synthesis and meta-analysis. There were N = 189,145 individuals in the face mask intervention arm and N = 173,536 in the control arm, and the follow-up times ranged from 4 days to 19 months. Our results showed between-study heterogeneity (p < 0.0001). While there was no statistically significant association over all studies when the covariate unadjusted intervention effect estimates were used (RR = 0.977 [0.858–1.113], p = 0.728), our subgroup analyses revealed that a face mask intervention reduced respiratory infections in the adult subgroup (RR = 0.8795 [0.7861–0.9839], p = 0.0249) and in a community setting (RR = 0.890 [0.812–0.975], p = 0.0125). Furthermore, our leave-one-out analysis found that one study biased the results towards a null effect. Consequently, when using covariate adjusted odds ratio estimates to have a more precise effect estimates of the intervention effect to account for differences at the baseline, the results showed that a face mask intervention did reduce respiratory infections when the biasing study was excluded from the analysis (OR = 0.8892 [0.8061–0.9810], p = 0.0192). Conclusion Our findings support the use of face masks particularly in a community setting and for adults. We also observed substantial between-study heterogeneity and varying adherence to protocol. Notably, many studies were subject to contamination bias thus affecting the efficacy of the intervention, that is when also some controls used masks or when the intervention group did not comply with mask use leading to a downward biased effect of treatment receipt and efficacy.Peer reviewe

    Diminished coagulation capacity assessed by calibrated automated thrombography during acute Puumala hantavirus infection

    Get PDF
    Coagulation abnormalities are associated with Puumala-virus-induced hemorrhagic fever with renal syndrome (PUUV-HFRS). We evaluated the coagulation capacity of plasma during acute PUUV-HFRS by measuring thrombin generation using calibrated automated thrombography (CAT). The study cohort comprised 27 prospectively collected, consecutive, hospital-treated patients with acute PUUV infection. Blood samples were drawn in the acute phase and at the control visit approximately 5 weeks later. To evaluate thrombin generation, the lag time of initiation, endogenous thrombin potential (ETP), and peak and time to peak thrombin concentration were assessed by CAT in platelet poor plasma without corn trypsin inhibitor. Plasma levels of d-dimer, fibrinogen and prothrombin fragments (F1 + 2) were also evaluated. When the acute phase was compared with the control phase, ETP was decreased (median 1154 nmol/l/min, range 67-1785 vs. median 1385 nmol/l/min, range 670-1970; P <0.001), while the lag time was prolonged (median 3.8 min, range 2.1-7.7 vs. median 2.9 min, range 2.0-4.1; P <0.001). Low ETP correlated with low peak thrombin concentration (r = 0.833, P <0.001). Prolonged time to peak associated with the lag time (r = 0.78, P <0.001). ETP was associated with thrombocytopenia (r = 0.472, P = 0.015) and weakly with fibrinogen level (r = 0.386, P = 0.047). The measured CAT parameters did not associate with d-dimer and F1 + 2 levels. Decreased ETP together with low peak and prolonged lag time indicate decreased plasma potential for thrombin generation in vitro. Together with low platelet count and enhanced fibrinolysis, this further refers to altered blood coagulation and increased propensity toward bleeding in acute PUUV-HFRS. Copyright (C) 2018 Wolters Kluwer Health, Inc. All rights reserved.Peer reviewe

    Meta-analysis fine-mapping is often miscalibrated at single-variant resolution

    Get PDF
    Funding Information: We acknowledge all the participants and researchers of the 23 biobanks that have contributed to the GBMI. Biobank-specific acknowledgments are included in the Data S3 . We thank H. Huang, A.R. Martin, B.M. Neale, Y. Okada, K. Tsuo, J.C. Ulirsch, Y. Wang, and all the members of Finucane and Daly labs for their helpful feedback. M.K. was supported by a Nakajima Foundation Fellowship and the Masason Foundation . H.K.F. was funded by NIH grant DP5 OD024582 . Publisher Copyright: © 2022 The Author(s)Meta-analysis is pervasively used to combine multiple genome-wide association studies (GWASs). Fine-mapping of meta-analysis studies is typically performed as in a single-cohort study. Here, we first demonstrate that heterogeneity (e.g., of sample size, phenotyping, imputation) hurts calibration of meta-analysis fine-mapping. We propose a summary statistics-based quality-control (QC) method, suspicious loci analysis of meta-analysis summary statistics (SLALOM), that identifies suspicious loci for meta-analysis fine-mapping by detecting outliers in association statistics. We validate SLALOM in simulations and the GWAS Catalog. Applying SLALOM to 14 meta-analyses from the Global Biobank Meta-analysis Initiative (GBMI), we find that 67% of loci show suspicious patterns that call into question fine-mapping accuracy. These predicted suspicious loci are significantly depleted for having nonsynonymous variants as lead variant (2.7×; Fisher's exact p = 7.3 × 10−4). We find limited evidence of fine-mapping improvement in the GBMI meta-analyses compared with individual biobanks. We urge extreme caution when interpreting fine-mapping results from meta-analysis of heterogeneous cohorts.Peer reviewe

    Polygenic and clinical risk scores and their impact on age at onset and prediction of cardiometabolic diseases and common cancers

    Get PDF
    Polygenic risk scores (PRSs) have shown promise in predicting susceptibility to common diseases1,2,3. We estimated their added value in clinical risk prediction of five common diseases, using large-scale biobank data (FinnGen; n = 135,300) and the FINRISK study with clinical risk factors to test genome-wide PRSs for coronary heart disease, type 2 diabetes, atrial fibrillation, breast cancer and prostate cancer. We evaluated the lifetime risk at different PRS levels, and the impact on disease onset and on prediction together with clinical risk scores. Compared to having an average PRS, having a high PRS contributed 21% to 38% higher lifetime risk, and 4 to 9 years earlier disease onset. PRSs improved model discrimination over age and sex in type 2 diabetes, atrial fibrillation, breast cancer and prostate cancer, and over clinical risk in type 2 diabetes, breast cancer and prostate cancer. In all diseases, PRSs improved reclassification over clinical thresholds, with the largest net reclassification improvements for early-onset coronary heart disease, atrial fibrillation and prostate cancer. This study provides evidence for the additional value of PRSs in clinical disease prediction. The practical applications of polygenic risk information for stratified screening or for guiding lifestyle and medical interventions in the clinical setting remain to be defined in further studies.Peer reviewe

    Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics

    Get PDF
    Publisher Copyright: © 2022 The Author(s)The research of rare and devastating orphan diseases, such as idiopathic pulmonary fibrosis (IPF) has been limited by the rarity of the disease itself. The prognosis is poor—the prevalence of IPF is only approximately four times the incidence, limiting the recruitment of patients to trials and studies of the underlying biology. Global biobanking efforts can dramatically alter the future of IPF research. We describe a large-scale meta-analysis of IPF, with 8,492 patients and 1,355,819 population controls from 13 biobanks around the globe. Finally, we combine this meta-analysis with the largest available meta-analysis of IPF, reaching 11,160 patients and 1,364,410 population controls. We identify seven novel genome-wide significant loci, only one of which would have been identified if the analysis had been limited to European ancestry individuals. We observe notable pleiotropy across IPF susceptibility and severe COVID-19 infection and note an unexplained sex-heterogeneity effect at the strongest IPF locus MUC5B.Peer reviewe

    Global Biobank Meta-analysis Initiative : Powering genetic discovery across human disease

    Get PDF
    Funding Information: The work of the contributing biobanks was supported by numerous grants from governmental and charitable bodies. Biobank-specific acknowledgments and more detailed acknowledgments are included in Data S2. Initiative management, S.B.C. J.C. N.J.C. M.J.D. E.E.K. A.R.M. B.M.N. Y.O. A.V.P. D.A.v.H. R.G.W. C.J.W. W.Z. and S.Z.; individual biobank analysis, A.B. Y.B. B.M.B. C.D.B. S.C. T.-T.C. K.C. S.M.D. M.D. G.H.d.B. Y.D. N.J.D. M.-J.F. Y.-C.A.F. S.F. V.L.F. L.G.F. E.R.G. T.R.G. D.H.G. C.R.G. G.G.-A. S.E.G. L.A.G. C.H. J.B.H. W.E.H. H.H. K.H. N.I. A.I. R.J. M. Kurki, J.K. N.K. E.E.K. J.T.K. M. Kanai, T.L. K.L. M.H.L. S.L. K.L. Y.-F.L. V.L.F. R.J.F.L. E.A.L.-M. A.R.-M. S.M.-G. R.M. R.E.M. H.C.M. A.R.M. Y.M. H.M. S.E.M. I.Y.M. B.M. S.M. K.N. S.N. M.A.N.-A. K.N. Y.O. P.P. A.L.-P. A.P. B.P. S.P. M.H.P. D.J.R. N.R. M.D.R. A.R. C.S. S.S. S.S.S. J.A.S. P.S. I.S. T.T. R.T. K.T. J.U. D.A.v.H. B.V. M.V. Y.V. J.M.V. R.G.W. Y.W. S.J.W. B.N.W. K.-H.H.W. M.Z. X.Z. and S.Z.; individual biobank management, N.A. A.A.T. K.M.A.-D. P.A. K.C.B. M. Boehnke, M. Boezen, C.D.B. A.C. Z.C. C.-Y.C. J.C. N.J.C. S.M.D. S.F. Y.-C.A.F. S.F. E.F. T.G. C.R.G. C.J.G. Y.G. H.H. K.A.H. K.H. S.I.I. N.M.J. N.K. E.E.K. J.T.K. C.L. M.H.L. M.T.M.L. L.L. K.L. Y.-F.L. R.J.F.L. J.L. S.M. Y.M. K.M. I.Y.M. Y.O. C.M.O. A.V.P. B.P. D.J.P. D.J.R. M.D.R. S.S. J.W.S. H.S. K.S. T.T. U.T. R.C.T. D.A.v.H. M.V. R.G.W. D.C.W. C.W. J.W. M.Z. X.Z. and S.Z.; study design and interpretation of results, A.B. M. Boehnke, M. Boezen, B.M.B. T.-T.C. C.-Y.C. M.J.D. G.D.S. N.J.D. S.F. M.-J.F. H.K.F. E.R.G. A.G. T.G. J.B.H. J.H. K.H. R.J. M.K. E.E.K. T.K. C.M.L. V.L.F. E.A.L.-M. A.R.M. S.N. B.M.N. C.M.O. J.J.P. B.P. N.R. H.R. J.A.S. I.S. K.T. D.A.v.H. R.G.W. Y.W. D.C.W. S.J.W. C.J.W. B.N.W. J.W. K.-H.H.W. M.Z. H.Z. J.Z. W.Z. X.Z. and S.Z.; drafted and edited the paper, A.B. M. Boehnke, M. Boezen, M.J.D. G.H.d.B. N.J.D. T.R.G. J.B.H. N.I. N.M.J. M.K. V.L.F. S.M. A.R.M. H.M. S.N. B.M.N. C.M.O. B.P. H.R. C.S. J.A.S. J.W.S. K.T. Y.W. D.C.W. C.J.W. K.-H.H.W. H.Z. J.Z. W.Z. and S.Z.; primary meta-analysis and quality control, M.J.D. H.K.F. M. Kanai, J.K. J.T.K. M. Kurki, M.M. B.M.N. C.J.W. K.-H.H.W. and W.Z.; drug discovery: S.N. T.K. K.-H.H.W. W.Z. and Y.O.; fine mapping, M. Kanai, W.Z. M.J.D. and H.K.F.; polygenic risk score, Y.W. S.N. E.A.L.-M. S.K. K.T. K.L. M. Kanai, W.Z. K.W. M.-J.F. L.B. P.A. P.D. V.L.F. R.M. Y.M. B.B. S.S. J.U. E.R.G. N.J.C. I.S. Y.O. A.R.M. and J.B.H.; proteome-wide Mendelian randomization, H.Z. H.R. A.B. G.H. G.D.S. B.M.B. W.Z. B.M.N. T.R.G. and J.Z.; transcriptome-wide association study, A.B. J.B.H. W.Z. J.Z. M. Kanai, B.P. E.R.G. and N.J.C.; asthma, K.T. W.Z. Y.W. M. Kanai, S.N. Y.O. B.M.N. M.J.D. and A.R.M.; heart failure, K.-H.H.W. N.J.D. B.N.W. I.S. S.E.G. J.B.H. N.J.C. M.P. R.J.F.L. M.J.D. B.M.N. W.Z. W.E.H. and C.J.W.; idiopathic pulmonary fibrosis, J.J.P. W.Z. M.J.D. J.T.K. N.J.C. and J.B.H.; primary open-angle glaucoma, V.L.F. A.B. W.Z. Y.W. K.L. M. Kanai, E.A.L.-M. P.S. R.T. X.Z. S.N. S.S. Y.O. N.I. S.M. H.S. I.S. C.W. A.R.M. E.R.G. N.M.J. N.J.C. and J.B.H.; stroke, I.S. K.-H.H.W. W.H. B.N.W. W.Z. J.E.H. A.P. B.B. A.H.S. M.E.G. R.G.W. K.H. C.K. S.Z. M.J.D. B.M.N. and C.J.W.; venous thromboembolism, B.N.W. I.S. K.-H.H.W. B.B. V.L.F. K.T. M.D. B.N. W.Z. J.A.S. and C.J.W. All authors reviewed the manuscript. M.J.D. is a founder of Maze Therapeutics. B.M.N. is a member of the scientific advisory board at Deep Genomics and a consultant for Camp4 Therapeutics, Takeda Pharmaceutical, and Biogen. The spouse of C.J.W. works at Regeneron Pharmaceuticals. C.-Y.C. is employed by Biogen. C.R.G. owns stock in 23andMe, Inc. T.R.G. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. E.E.K. has received speaker fees from Regeneron, Illumina, and 23andMe and is a member of the advisory board for Galateo Bio. R.E.M. has received speaker fees from Illumina and is a scientific advisor to the Epigenetic Clock Development Foundation. G.D.S. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. K.S. and U.T. are employed by deCODE Genetics/Amgen, Inc. J.Z. has received research funding from various pharmaceutical companies to support the application of Mendelian randomization to drug target prioritization. S.M. is a co-founder of and holds stock in Seonix Bio. Publisher Copyright: © 2022Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.Peer reviewe

    Genetic Associations and Architecture of Asthma-COPD Overlap

    Get PDF
    BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 x 10(-6)) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 x 10(-8)) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.Peer reviewe

    Leveraging global multi-ancestry meta-analysis in the study of idiopathic pulmonary fibrosis genetics

    Get PDF
    The research of rare and devastating orphan diseases, such as idiopathic pulmonary fibrosis (IPF) has been limited by the rarity of the disease itself. The prognosis is poor—the prevalence of IPF is only approximately four times the incidence, limiting the recruitment of patients to trials and studies of the underlying biology. Global biobanking efforts can dramatically alter the future of IPF research. We describe a large-scale meta-analysis of IPF, with 8,492 patients and 1,355,819 population controls from 13 biobanks around the globe. Finally, we combine this meta-analysis with the largest available meta-analysis of IPF, reaching 11,160 patients and 1,364,410 population controls. We identify seven novel genome-wide significant loci, only one of which would have been identified if the analysis had been limited to European ancestry individuals. We observe notable pleiotropy across IPF susceptibility and severe COVID-19 infection and note an unexplained sex-heterogeneity effect at the strongest IPF locus MUC5B.publishedVersionPeer reviewe
    • …
    corecore