91 research outputs found

    Nutritional Deficiencies and Phospholipid Metabolism

    Get PDF
    Phospholipids are important components of the cell membranes of all living species. They contribute to the physicochemical properties of the membrane and thus influence the conformation and function of membrane-bound proteins, such as receptors, ion channels, and transporters and also influence cell function by serving as precursors for prostaglandins and other signaling molecules and modulating gene expression through the transcription activation. The components of the diet are determinant for cell functionality. In this review, the effects of macro and micronutrients deficiency on the quality, quantity and metabolism of different phospholipids and their distribution in cells of different organs is presented. Alterations in the amount of both saturated and polyunsaturated fatty acids, vitamins A, E and folate, and other micronutrients, such as zinc and magnesium, are discussed. In all cases we observe alterations in the pattern of phospholipids, the more affected ones being phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The deficiency of certain nutrients, such as essential fatty acids, fat-soluble vitamins and some metals may contribute to a variety of diseases that can be irreversible even after replacement with normal amount of the nutrients. Usually, the sequelae are more important when the deficiency is present at an early age

    Targeted Transferrin-Modified Polymeric Micelles: Enhanced Efficacy in Vitro and in Vivo in Ovarian Carcinoma

    No full text
    In this study, transferrin (Tf)-modified poly­(ethylene glycol)-phosphatidylethanolamine (mPEG-PE) micelles loaded with the poorly water-soluble drug, R547 (a potent and selective ATP-competitive cyclin-dependent kinase (CDK) inhibitor), were prepared and evaluated for their targeting efficiency and cytotoxicity in vitro and in vivo to A2780 ovarian carcinoma cells, which overexpress transferrin receptors (TfR). At 10 mM lipid concentration, both Tf-modified and plain micelles solubilized 800 μg of R547. Tf-modified micelles showed enhanced interaction with A2780 ovarian carcinoma cells in vitro. The involvement of TfR in endocytosis of Tf-modified micelles was confirmed by colocalization studies of micelle-treated cells with the endosomal marker Tf-Alexa488. We confirmed endocytosis of micelles in an intact form with micelles loaded with a fluorescent dye and additionally labeled with fluorescent lipid. The in vitro cytotoxicity and in vivo tumor growth inhibition studies in A2780-tumor bearing mice confirmed the enhanced efficacy of Tf-modified R547-loaded micelles compared to free drug solution and to nonmodified micelles. The results of this study demonstrate the potential application of Tf-conjugated polymeric micelles in the treatment of tumors overexpressing TfR
    corecore