126 research outputs found

    Supersonic Discrete Kink-Solitons and Sinusoidal Patterns with "Magic" wavenumber in Anharmonic Lattices

    Full text link
    The sharp pulse method is applied to Fermi-Pasta-Ulam (FPU) and Lennard-Jones (LJ) anharmonic lattices. Numerical simulations reveal the presence of high energy strongly localized ``discrete'' kink-solitons (DK), which move with supersonic velocities that are proportional to kink amplitudes. For small amplitudes, the DK's of the FPU lattice reduce to the well-known ``continuous'' kink-soliton solutions of the modified Korteweg-de Vries equation. For high amplitudes, we obtain a consistent description of these DK's in terms of approximate solutions of the lattice equations that are obtained by restricting to a bounded support in space exact solutions with sinusoidal pattern characterized by the ``magic'' wavenumber k=2π/3k=2\pi/3. Relative displacement patterns, velocity versus amplitude, dispersion relation and exponential tails found in numerical simulations are shown to agree very well with analytical predictions, for both FPU and LJ lattices.Comment: Europhysics Letters (in print

    Weakly nonlinear theory of grain boundary motion in patterns with crystalline symmetry

    Full text link
    We study the motion of a grain boundary separating two otherwise stationary domains of hexagonal symmetry. Starting from an order parameter equation appropriate for hexagonal patterns, a multiple scale analysis leads to an analytical equation of motion for the boundary that shares many properties with that of a crystalline solid. We find that defect motion is generically opposed by a pinning force that arises from non-adiabatic corrections to the standard amplitude equation. The magnitude of this force depends sharply on the mis-orientation angle between adjacent domains so that the most easily pinned grain boundaries are those with an angle between four and eight degrees. Although pinning effects may be small, they do not vanish asymptotically near the onset of this subcritical bifurcation, and can be orders of magnitude larger than those present in smectic phases that bifurcate supercritically

    Magnetization reversal of ferromagnetic nanodisc placed above a superconductor

    Full text link
    Using numerical simulation we have studied a magnetization distribution and a process of magnetization reversal in nanoscale magnets placed above a superconductor plane. In order to consider an influence of superconductor on magnetization distribution in the nanomagnet we have used London approximation. We have found that for usual values of London penetration depth the ground state magnetization is mostly unchanged. But at the same time the fields of vortex nucleation and annihilation change significantly: the interval where vortex is stable enlarges on 100-200 Oe for the particle above the superconductor. Such fields are experimentally observable so there is a possibility of some practical applications of this effect.Comment: 8 pages, 9 figure

    Switching phenomena in magnetic vortex dynamics

    Get PDF
    A magnetic nanoparticle in a vortex state is a promising candidate for the information storage. One bit of information corresponds to the upward or downward magnetization of the vortex core (vortex polarity). Generic properties of the vortex polarity switching are insensitive of the way how the vortex dynamics was excited: by an AC magnetic field, or by an electrical current. We study theoretically the switching process and describe in detail its mechanism, which involves the creation and annihilation of an intermediate vortex-antivortex pair.Comment: REVTeX, 8 pages, 2 figures; to appear in a special issue of Low Temperature Physics in memory of A.M.Kosevic

    Energy localization, Fano resonances, and nonlinear meta-optics

    Get PDF
    This paper reflects on some memories of the research topics developed at Department No. 29 of the Institute for Low Temperature Physics and Engineering in Kharkov more than 30 years ago. It also provides some recent advances on my major research activities related to those topics, including energy localization and solitons in nonlinear lattices, Fano resonances in photonics and phononics, and nonlinear effects in meta-optics and nanophotonics. Curiously enough, each of those topics can be associated with some memories and discussions that happened in Kharkov a long time ago

    Vortex Polarity Switching in Magnets with Surface Anisotropy

    Get PDF
    Vortex core reversal in magnetic particle is essentially influenced by a surface anisotropy. Under the action of a perpendicular static magnetic field the vortex core undergoes a shape deformationof pillow- or barrel-shaped type, depending on the type of the surface anisotropy. This deformation plays a key point in the switching mechanism: We predict that the vortex polarity switching is accompanied (i) by a linear singularity in case of Heisenberg magnet with bulk anisotropy only and (ii) by a point singularities in case of surface anisotropy or exchange anisotropy. We study in details the switching process using spin-lattice simulations and propose a simple analytical description using a wired core model, which provides an adequate description of the Bloch point statics, its dynamics and the Bloch point mediated switching process. Our analytical predictions are confirmed by spin-lattice simulations for Heisenberg magnet and micromagnetic simulations for nanomagnet with account of a dipolar interaction.Comment: 17 pages, 15 figure

    Solitary Waves of Planar Ferromagnets and the Breakdown of the Spin-Polarized Quantum Hall Effect

    Full text link
    A branch of uniformly-propagating solitary waves of planar ferromagnets is identified. The energy dispersion and structures of the solitary waves are determined for an isotropic ferromagnet as functions of a conserved momentum. With increasing momentum, their structure undergoes a transition from a form ressembling a droplet of spin-waves to a Skyrmion/anti-Skyrmion pair. An instability to the formation of these solitary waves is shown to provide a mechanism for the electric field-induced breakdown of the spin-polarized quantum Hall effect.Comment: 5 pages, 3 eps-figures, revtex with epsf.tex and multicol.st

    A supersonic crowdion in mica: Ultradiscrete kinks with energy between 40^{40}K recoil and transmission sputtering

    Get PDF
    In this chapter we analyze in detail the behaviour and properties of the kinks found in an one dimensional model for the close packed rows of potassium ions in mica muscovite. The model includes realistic potentials obtained from the physics of the problem, ion bombardment experiments and molecular dynamics fitted to experiments. These kinks are supersonic and have an unique velocity and energy. They are ultradiscrete involving the translation of an interstitial ion, which is the reason they are called 'crowdions'. Their energy is below the most probable source of energy, the decay of the 40^{40}K isotope and above the energy needed to eject an atom from the mineral, a phenomenon that has been observed experimentallyComment: 28 pages, 15 figure

    Haldane gap in the quasi one-dimensional nonlinear σ\sigma-model

    Full text link
    This work studies the appearance of a Haldane gap in quasi one-dimensional antiferromagnets in the long wavelength limit, via the nonlinear σ\sigma-model. The mapping from the three-dimensional, integer spin Heisenberg model to the nonlinear σ\sigma-model is explained, taking into account two antiferromagnetic couplings: one along the chain axis (JJ) and one along the perpendicular planes (JJ_\bot) of a cubic lattice. An implicit equation for the Haldane gap is derived, as a function of temperature and coupling ratio J/JJ_\bot/J. Solutions to these equations show the existence of a critical coupling ratio beyond which a gap exists only above a transition temperature TNT_N. The cut-off dependence of these results is discussed.Comment: 14 pages (RevTeX 3.0), 3 PostScript figures appended (printing instructions included

    Nonlinear parametric instability in double-well lattices

    Full text link
    A possibility of a nonlinear resonant instability of uniform oscillations in dynamical lattices with harmonic intersite coupling and onsite nonlinearity is predicted. Numerical simulations of a lattice with a double-well onsite anharmonic potential confirm the existence of the nonlinear instability with an anomalous value of the corresponding power index, 1.57, which is intermediate between the values 1 and 2 characterizing the linear and nonlinear (quadratic) instabilities. The anomalous power index may be a result of competition between the resonant quadratic instability and nonresonant linear instabilities. The observed instability triggers transition of the lattice into a chaotic dynamical state.Comment: A latex text file and three pdf files with figures. Physical Review E, in pres
    corecore