We study the motion of a grain boundary separating two otherwise stationary
domains of hexagonal symmetry. Starting from an order parameter equation
appropriate for hexagonal patterns, a multiple scale analysis leads to an
analytical equation of motion for the boundary that shares many properties with
that of a crystalline solid. We find that defect motion is generically opposed
by a pinning force that arises from non-adiabatic corrections to the standard
amplitude equation. The magnitude of this force depends sharply on the
mis-orientation angle between adjacent domains so that the most easily pinned
grain boundaries are those with an angle between four and eight degrees.
Although pinning effects may be small, they do not vanish asymptotically near
the onset of this subcritical bifurcation, and can be orders of magnitude
larger than those present in smectic phases that bifurcate supercritically