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and Luis M. Garcı́a-Raffi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 2
2 Description of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 5
3 The magic mode revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 7
4 Kinks with substrate potential: the crowdion . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 13
5 Phonons and crowdions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 15
6 Excess energy and thermalized medium . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 18
7 Recoil energy of40K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 22
8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 26
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Abstract In this work we analyze in detail the behaviour and properties of the kinks
found in an one dimensional model for the close packed rows ofpotassium ions in
mica muscovite. The model includes realistic potentials obtained from the physics
of the problem, ion bombardment experiments and molecular dynamics fitted to
experiments. These kinks are supersonic and have an unique velocity and energy.
They are ultradiscrete involving the translation of an interstitial ion, which is the
reason they are calledcrowdions. Their energy is below the most probable source of
energy, the decay of the40K isotope and above the energy needed to eject an atom
from the mineral, a phenomenon that has been observed experimentally
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1 Introduction

Some materials are able to record the passage of charged particles and are used as
radiation detectors [7, 9] and there are minerals that show nuclear tracks that were
produced at some stage during their formation [22]. The mineral mica muscovite
has been shown to have recorded the tracks of muons, positrons and other swift
particles with positive charge while being deep underground [23–25]. The most re-
cent reviews are Refs. [26, 27]. The tracks are recorded within the cation layer
of potassium ions which form a two-dimensional hexagonal lattice. There are also
many tracks along the close packed directions of this lattice that cannot be produced
by charged particles and are attributed to some vibrationalentities calledquodons
because of their quasi one-dimensional structure [28,29,31,33]. Their existence has
also been shown directly with an experiment in which the energy of alpha particles
incident on one side of a mica specimen was able to eject atomsat the opposite
border along the cation lattice directions [30].

Recently, a model with realistic potentials for the dynamics of potassium ions
within the cation layer of mica muscovite has been introduced [1–3]. The au-
thors have considered the available potentials for the interaction between atoms and
ions. For the interaction between potassium ions K+ the electrical potential was
not enough because the passage of the kink brings about very short distances, for
which the ions can no longer be described as point charges. Therefore, the Ziegler-
Biersack-Littmark (ZBL) potential was used [36]. This potential models the electri-
cal repulsion by thenucleipartially screened by the electron cloud. ZBL potentials
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Fig. 1 Energies of several kinks with respect to time. When more energy than the crowdion’s one is
delivered and therefore a faster kink is produced, a radiation process takes place until the supersonic
crowdion is formed. Thereafter, the crowdion is extremely stable. If the initial energy is smaller
than the crowdion’s one the kink dissipates into phonons. The scaled units are approximately 3 eV
for energy and 0.2 ps for time. The final velocity and energy are approached asymptotically, being
Vc = 2.7387 (7.2 km/s) andEk = 9.5 (26.2 eV) in scaled and physical units
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have been widely tested and compared to data obtained in ion bombardment ex-
periments, being therefore the more realistic ones while using classical mechanics.
Quantum calculations could certainly provide more accuracy but at the cost of much
more complex analytical and numerical calculations. The interaction of the potas-
sium ions with the lattice was described with empirical potentials used in molecular
dynamics and fitted with thermodynamic properties, neutron[5] and infrared spec-
troscopy [6] and also validated for other silicates [11].

Arguably, the most important result in the full system with substrate was that a
supersonic kink was formed with specific energy and velocity[3]. As it involves the
movement of an interstitial atom through the lattice, it will be called a (supersonic)
crowdionin this work as described in Ref. [13]. The term will be reserved for this
specific supersonic kink with stable and unique velocity andnot for other kinks. If
the lattice was given more energy, nonlinear waves and laterphonons were emitted
until the specific velocity and energy was reached. This characteristic of supersonic
kinks associated with specific values of the velocity have also been described in
Refs. [32,37], where they use the terms topological solitonand lattice soliton.

The supersonic crowdion found in the mica model is extremelydiscrete as ba-
sically only two ions are moving at the same time, which will be referred to as
the magic mode with sinusoidal waveformand corresponds to a phase delay very
close toq = 2π/3 [14, 15] as explained below. In themagic mode, which was in-
troduced in the Fermi-Pasta-Ulam lattice to describe both steady-state or slowly-
moving breathers and supersonic kinks [14], only two particles are mostly involved
in the motion at the same time. The mode with modeq= π is the limit of discrete-
ness as only one particle is moving at the same time, and the kink is equivalent to just
one particle hitting the following one with a hard-sphere interaction. We have also
called these kinksultradiscrete kinks(UDK). They are also known as kinks with

Fig. 2 The structure of mica
muscovite where the potas-
sium layer can be observed.
This point of view has been
chosen to emphasize the K+

rows represented by yellow
balls
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atomic scale localization and have been described theoretically [10] and observed
experimentally in a chain of repelling magnets [19]. The energy dissipated by the
crowdion and its subsequent stability can be seen in Fig. 1. Supersonic kinks with
a discrete set of velocities for which there is no radiation have been described in
previous publications [13,18,32,37]. They appear in systems with substrate poten-
tial and nonlinear coupling and can be described as multiplesolitons. In our system
due to the extreme discreteness of the kinks there is only a non-radiating velocity
corresponding to a double soliton as will be explained in Sect. 4. See also Ref. [3].
Figure 3 represents the coordinates of the potassium ions obtained in a numerical
simulation.

The energy of the crowdion is approximatelyEk = 26.2eV, which is an interest-
ing result because there are sources of energy in the latticewhich can provide it as
it will be explained with more detail in Sect. 7. The most abundant of the unstable
potassium isotopes is40K, which can decay by different beta processes providing
recoil energies up to 50 eV. The crowdion energy is also smaller than the second
ionization energy of potassium, that is, 31,6 eV [17], whichthus prevents the pos-
sibility of inelastic collisions where the kinetic energy would be lost stopping the
propagation of the kink. It is also larger that the 4-8 eV needed to eject an atom [16],
an effect that has been found in an experiment where the transmission of localized
energy along lattice directions with the subsequent ejection of an atom at the edge
of the boundary has been observed [30].

Another point of interest of the crowdion is that it consistsessentially of a
charged interstitialK+, i.e. an excess of an unit of elemental charge, travelling at
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Fig. 3 Coordinates of the supersonic crowdion or ultradiscrete kink from numerical simulations.
It can be observed that only two particles are moving at the same time. Lattice unitsa= 5.19Å for
coordinates and scaled units (0.2 ps) for time. Also the double kink structure can be seen as will be
explained later in the text
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twice the speed of sound. Therefore, it is very likely to be recorded, as positively
charged particles leave tracks in mica muscovite.

Are the quodons observed in mica muscovite the crowdions described in this
work? It is not clear, but there are several points in their favour: a) They have an
energy that can be produced by the recoil of40K; b) They have enough energy
to expel an atom at the surface; c) They have stability and seem to travel forever;
d) They survive to room and higher temperatures; e) They transport positive charge
that would leave a track in mica muscovite. Against them is that their existence and
stability has not been verified in two or three dimensions. But even if their energy
spreads they are likely to leave some of the other dark marks in mica.

The sketch of this work is as following: Section 2 describes the system and po-
tentials. In Sect. 3 the magic mode is described with detail and the quantities in the
fundamental ansatz are redefined in a new meaningful way. Section 4 describes the
properties of the kinks when the substrate potential is introduced and the supersonic
crowdion appears, while Sect. 5 describes the properties ofphonons in a system with
a substrate and applies them to analyze the crowdion’s phonon tail. Some interest-
ing results of the outcome of numerical simulations when excess energy is delivered
and when the system is previously thermalized are presentedin Sect. 6. The recoil
energies in the different decay modes of40K and their consequences for the forma-
tion of kinks or other lattice excitations are described in Sect. 7. The work ends with
a summary.

2 Description of the system

Mica muscovite is a layered silicate where a layer of potassium ions is sandwiched
between layers of a complex silicate structure of tetrahedra and octahedra. This
cation layer has a hexagonal structure where rows of potassium ions can be iden-
tified, as seen in Fig. 2. As explained with more detail in Refs. [1–3] we consider
an 1D model for a row of K+ ions. The distance between ions isa= 5.19Å which
in scaled units will be taken as the unit of distance. The interaction between ions is
described by two terms, the first one is the electrostatic Coulomb repulsion

UC = Ke
e2

r
−Ke

e2

a
, (1)

where Ke is the Coulomb constant, e the elementary unit of charge andr =
dn = xn − xn−1 is the interatomic distance. The reference level of energy is taken
as the electrostatic energy at the equilibrium distancea. This value of energy
Kee2/a = 2.7746eV is also taken as the unit of energy in scaled units, andit is
useful to remember that it is approximatelyuE ∼ 3eV. The other natural units
are the potassium massmK = 39.1 amu and therefore the derived unit of time
τ =

√

mKa3/Kee2 = 0.1984ps≃ 0.2ps.
This system supports propagating kinks of almost any velocity and energy [1–3]

but with very small inter-particle distances for which the ions cannot be described as
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point particles. The second term for short-range repulsionis the Ziegler-Biersack-
Littmark or ZBL potential, which corresponds to the electrostatic interaction be-
tween nuclei partially shielded by the electron cloud whichis described by an uni-
versal function that has been tested with experiments of ionbombardment [36]. The
ZBL potential usually involves four terms which are effective at different ranges of
energies. For the potassium atoms at energies up to 200 keV itis enough to consider
a single term given by

UZBL(r) =
α
r

exp(− r
ρ
) , (2)

with α = 2650.6 eVÅ andρ = 0.29529Å which correspond toα = 184.1 andρ =
0.0569 in scaled units, respectively. No attractive Van der Waals term is considered
as it would be much weaker than the repulsive term. The systemwith Coulomb and
ZBL potential also support propagating kinks with many energies but with realistic
distances between particles [3].

The interaction with the atoms in the lattice above and belowthe potassium layer
is obtained from an unrelaxed lattice using empirical potentials used in molecular
dynamics and fitted with thermodynamic and spectroscopic properties [5,11] which
are also valid for other silicates. The resulting periodic potential can be written as a
Fourier series for which it is enough to retain the first five terms [3]

Us(x) =
4

∑
n=0

Uncos(2π n
x
a
) . (3)

U

r

Fig. 4 Interaction potentials U(r) in scaled units. Coulomb (—); ZBL (−−); Coulomb+ZBL (thick
– ); substrate potential (· · ·) and the sum of the Coulomb, ZBL and substrate potentials (−·−). The
scaled units are 2.77 eV and the lattice unita= 5.19Å for U andr, respectively
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The Fourier coefficients are given by

Un = [6.7902,−9.2920,3.0512,−0.6387,0.0891]eV=

= [2.4473,−3.3490,1.0997,−0.2302,0.0321] , (4)

with the latter values given in scaled units. As will be shownlater, the linear spatial
frequency for the long wavelength limit becomes 119 cm−1, that is quite close to the
experimental one of 110 cm−1 obtained with infrared spectroscopy [6]. A compari-
son between the three potentials can be seen in Fig. 4.

3 The magic mode revisited

In this section we describe the fundamental ansatz and the variable involved. We will
define the variables in a proper way, as they are not the same asin plane waves in
spite of their analytic similarity. We will use scaled unitsfor which the equilibrium
interatomic distance is the unity as described above exceptwhere stated otherwise.

3.1 Basic variables

Some variables used throughout the study are introduced here, together with their
definitions:

Positionxn: It describes the position of the particle labelledn. At equilibrium
xn = na, although the origin ofn is arbitrary.

Displacementun: It is the separation of the particlen from the equilibrium posi-
tion, that isun = xn−na.

Interatomic distancedn: It is the distance between two particles or ions. At equi-
librium it is equal to the lattice unita, which in lattice units is the unity, but
it will be written often explicitly for clarity. It is related with the positions and
displacements asdn = xn− xn−1 = un−un−1+a.

Strainvn: The increase ofdn with respect to the equilibrium distance, i.e.vn =
dn−a. It is always negative for the kinks described in this work. It is related with
the displacements as:vn = un−un−1.

Compressioncn: The decrease ofdn with respect to the equilibrium distance, i.e.
cn = a−dn =−vn. It is always positive for the kinks described in this work. It is
related to the displacements as:cn = un−1−un.
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3.2 Fundamental ansatz

As demonstrated in Refs. [14, 15] for a large set of kink solutions of Fermi-Pasta-
Ulam systems, the strainvn = un − un−1 can be approximately described by the
fundamental ansatz with sinusoidal waveform:

vn =−A
2
(1+ cos(q(na−Vt)) with −π ≤ q(na−Vt)< π , (5)

whereq= 2π/3a or q= 2π/3 in scaled units witha= 1 that we will usually use.
The value ofvn is always negative representing a compression of the bond. This
ansatz describes a moving profile with velocity V that it is better visualized in the
alternative formvn = −Acos2(q/2(n−Vt)). At any given time its value is zero
except for a lengthλ = 2π/q representing the number of consecutive bonds com-
pressed. For a given bondn the value ofvn is zero except for an interval of time
T = 2π/(qV) representing the time during which the bond is compressed. Note that
λ is not a wavelength as there is no periodic wave andT is not a period as there is
no periodicity in time.

For convenience we will often use the equivalent expressionfor the compressions
cn =−vn:

cn =
A
2
(1+ cos(ωt −qn)) with −π ≤ ωt −qn< π , (6)

whereω = qV is the rate of variation of the phaseφ(n, t) = ωt − qn, i.e., ω =
∂φ(n, t)/∂ t but it is not the frequency as there is no periodicity. This equation will
be used in the next subsection as it is easier to interpret becausecn is always positive,
the phase increases in time and the bonds compressed later have smaller phase.

From the fundamental ansatz the displacement can be constructed and it may be
instructive to compare them with other solutions. They can be seen in Fig. 5 for
the magic modeq = 2π/3 compared with the first solutions for supersonic crow-
dions [13]. The compressionscn = un−1−un have a solitonic form and in the same
figure they are compared with the discretization of the solutions for the KdV equa-
tion, which describes waves in a canal [12], one of the first examples of solitons.

As we have seen these equations are not as simple as they seem,due to the com-
pactness condition for being nonzero. They look like harmonic waves, but they are
not. The quantities in the equation have to be redefined but they keep the usual re-
lationships for harmonic waves. In the following we proposeoperational definitions
that are convenient but are only approximately correct, which is also natural at the
fundamental ansatz is not exact either.

Velocity V : The average velocity of the kink. This is the magnitude best defined
in numerical simulations and experiments.

Phaseφ(n, t): Trivially, the phase of the bondn is φ(n, t) =ωt−qn. It determines
when a bond is compressed−π ≤ φ(n, t) < π and its state of compression. For
example,φ(n, t) = 0 is the phase of the state of maximum compression of the
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Fig. 5 (Left ) Profiles of the displacementsun for the sinusoidal magic mode (◦) and the ones
given in the original supersonic crowdions paper by Kosevich and Kovalev (1973) [13]. For a
quartic interatomic potential (∆ ): un = (2/π)arctan[exp(−q(n−Vt))] and for a cubic one (∇):
un = [1+exp(2q(n−Vt))]−1. ( Right) Comparison of the compressionscn(t) = un−1−un for the
magic mode (–) with the soliton for the continuous KdV equation [12]: cn = Asech2[q(n−Vt)]
(- -). The functions have been rewritten so that the parameters have the same meaning. The magic
mode is between the two K&K solutions and it is wider than the KdV one

bondcn = A, φ(n, t) =−π means the beginning of the compression process and
φ(n, t) = π is the end. It is not periodic as a bond is just compressed once, if for
example,φn = 2π cn = 0 and notA.

Active: This term will change depending on the variable we refer to. For the phase
it corresponds toφ(n, t) ∈ [−π ,π).

Phase rateω : It is the rate of variation of the phase with time orω = ∂φ(n, t)/∂ t =
qV. It is not the angular frequency as the ansatz is not a periodic function.

Compression time T: It is the interval of time for which a bond is compressed or
activated,T = 2π/ω . The interval of activity starts with zero compressioncn = 0
and finishes with the same value. In the meantime it achievescn = A, its maxi-
mum value. It also starts withφ =−π and finishes withφ = π . As the numerical
solutions become separate from the fundamental ansatz the operational definition
of T is the value that brings about a better fit ofvn with the fundamental ansatz.

Phase delay q: It is the phase difference between two active (compressed) bonds
n andn−1, that is,q = φ(n, t)− φ(n−1, t). Alternatively, it can be defined as
q= 2π(δ t/T) =ωδ t, whereδ t is the time delay between two consecutive active
bonds.

Kink lengthλ : It is the spatial extension of the kink, very much related with the
number of active bonds at a given timeλ/a or simply λ in scaled units. It is
given byλ = 2π/q and it is also the distance travelled by the kink during a time
intervalT, i.e.,λ =VT. The usual relationships also hold, that is,V = ω/q and
λ = 2π/q.

Amplitude A: It is the maximum value of the compressioncn.
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Fig. 6 Fourier spectrum of
the kinetic energy of the su-
personic crowdion obtained
from numerical simulations.
It is measured in a frame
that moves with the crowdion
in the lattice. We use arbi-
trary units for the intensity
and scaled units (5 THz) for
the frequency. The value of
the first harmonic is exactly
the characteristic linear fre-
quencyν̄ = Vc/a = 2.7387
and circular frequency
ω̄ = 2πν̄ ≃ 17.2, which
corresponds tōν ≃ 13.4 THz
in physical units.

Minimum distance R: It is the minimum value of the interparticle distancedn, that
is, R= a−A or R= 1−A in scaled units.

Characteristic frequencȳν : This is the inverse of the timeδ t that the kink needs
to travel a distance of a lattice site, i.e.ν̄ = 1/δ t =V/a or simplyν̄ =V in scaled
units. Note that̄ν = (λ/a)(1/T) (andnot 1/T). As the kink is not periodic it is
the physical frequency at which the compression, the kinetic or potential energy
or other magnitudes change while the kink travels in a lattice with perioda.
An example can be seen in Fig. 6. Their values for the crowdionare therefore
ν̄ = 2.7387 andω̄ = 2πν̄ ≃ 17.2, corresponding tōν ≃ 13.4 THz.

The equations for the displacementsun and its derivatives will be seen in the
following subsection.

3.3 Phasors for the magic mode

The easiest way to visualize the relative phases and distances of the variables is to
consider the rotating complex vectors orphasors

bn =
A
2

eiφ(n, t), with φ(n, t) = ωt −qn and cn =
A
2
+Re(bn) , (7)

There is an important difference with the usual concept of phasors and it is that
the circle is not periodic. The only phase interval where thephasors exists is−π ≤
φ(n, t)< π . If φ(n, t)<−π the phasorbn has not yet come into existence and when



A supersonic crowdion in mica 11

φ(n, t) > π , bn has disappeared. Therefore, forq = 2π/3 at a given time there are
three phasors in the unit circle as shown in Fig. 7. The three phasors have their
origin at (A/2,0) and rotate anti-clockwise with angular speedω while the timet
increases, let us denote thembn−1, bn, bn+1. In the followingn has to be understood
as the index of the inner bond of the three compressed ones or the index of the
intermediate phasor, that is−π/3 ≤ φ(n, t) < π/3. If we denote astn = n/V the
time for whichφ(n, tn) = 0, then−T/6≤ t − tn < T/6. This is not a restriction as
there is always a bond central to the three compressed ones.

The phasorbn+1 is behindbn ny an angleq and so on for a kink travelling to
increasingn number. Note thatbn−1+bn+bn+1 = 0.

Therefore, the particles first reached by the kink have larger phaseφ . The angle
φ = π is the angle for change of number, that is, whenbn−1 reaches that position
it disappears from the circle and ceases to be active, indicating that the bondn−1
is no longer compressed. At the same time, a new phasorbn+2 appears atφ = −π ,
indicating that a new bond has started to be compressed or becomesactive, after a
timeT it will in turn become inactive. As shown in Fig. 7, the horizontal distance to
the vertical straight line through the origin is the compressioncn = A/2+Re(bn).

Let us now consider the displacementsun, usingcn = un−1−un or un−1 = un+
cn. The particles not yet reached by the kink have zero displacement and the first
nonzero compression iscn+1. Thereforeun = cn+1 andun−1 = un+cn = cn+cn+1=

0 0.2 0.4 0.6 0.8 1

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
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 bn

 bn+

 bn−1

cn+=un

φ(n,t)

un−1

Fig. 7 Visualization of the evolution of the compressionscn = −vn = un−1 − un for the magic
modeq = 2π/3 (A = 2/3). Three phasorsbn−1,bn,bn+1 centered at(0,A/2) and rotating anti-
clockwise areactive(the bonds are compressed) at a given timet when−π ≤ φ (n, t) < π . Their
horizontal coordinates give the compression as can be seen with cn+1. The maximum compression
A is achieved forφ (n, t) = 0. At φ (n, t) = π , bn−1 will transform intobn+2 indicating that the bond
n−1 is no longer compressed while the bondn+1 starts its compression cycle. The displacements
are active while changing and only two are active at a given timeun = cn+1 and un−1 = cn +
cn+1 = 3A/2−cn−1. Form> n, um = 0 and form< n−1, um = 1. Also the nonzero velocities are
u̇n =−ω Im(bn+1) andu̇n−1 = ω Im(bn−1). Magnitudes are in lattice unitsa= 5.19Å
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A+Re(bn + bn+1) = A+Re(−bn−1) = 3A/2− cn−1 as represented in Fig. 7. To
summarize

un+1 = 0 (8)

un = cn+1 =
A
2
+Re(bn+1) =

A
2
+

A
2

cos(ωt −q)

un−1 =
3A
2

− cn−1 = A−Re(bn−1) = A− A
2

cos(ωt +q) . (9)

These equations are valid fort = 0 chosen as the time for which the central bond
n is most compressedcn = A and remains central,−π/3 ≤ φ(n, t) < π/3 and
−T/6≤ t < T/6. The following displacementun−2 = cn−1+cn+cn+1 = 3A/2= 1

n−3 n−2 n−1 n n+1 n+2 n+3

  3T/6

 2T/6 

  T/6 

0

 −T/6 

−2T/6 

−3T/6 

Site

Fig. 8 Magic modeq = 2π/3 for a kink. A sketch of the system is shown for a full time of
compressionT at time intervalsT/6. The white particle is labelledn, therefore its displacement
is un and the bond at its left is also bondn with compressioncn = −vn = un−1 − un. The origin
of time has been taken as the time of maximum compression of bond n, i.e., cn = A and dn =
a−A. During the time interval in the graph the white particlen moves from siten to siten+ 1.
At time t = −T/2 = −3T/6, the bondn is uncompressed (cn = 0, dn = 1) and again becomes
uncompressed att = 3T/6= T/2. Note that during the first twoT/6 intervals, although the bond
dn is changing, there is no appreciable displacementun. Note also, that the compressed structure
at t =−3T/6 between sitesn−2, n−1 has moved att = 3T/6 to sitesn+1, n+2, i.e., the kink
has moved three sites or the length of the kinkλ =VcT, while the white particlen has moved a
single site. Therefore, the average velocity of a particle in a timeT is 〈Vp〉 = 1/T = Vc/3. The
average velocity of a particle for the following fourT/6 intervals, when it is actually moving, is
〈Vp〉′ = 1/(2T/3) =Vc/2
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and equallyum = 1 for m≤ n−1, that is, for the particles that have been left dis-
placed by a lattice unit after the passage of the kink.

The particle velocities ˙um = ∂um/∂ t can also be calculated and visualized easily
usingḃm = iωbm and therefore Re(ḃm) =−ω Im(bm)

u̇n = ċn+1 =−ω Im(bn+1) =−ω
A
2

sin(ωt −q)

u̇n−1 = −ċn−1 = ω Im(bn−1) = ω
A
2

sin(ωt +q) . (10)

For any otherm, u̇m = 0.
For other integer values ofλ = 2π/q, there areλ active phasors and for non

integer values, the number of active phasors changes between the two integers below
and aboveλ . However, in this work we will concentrate on themagicmodeq =
2π/3 as it is very close to the crowdion found in the simulations.

In this way it is easy to construct the evolution of the particles during the com-
pression timeT as can be seen in Fig. 8 for six times between−T/2 toT/2. In this
time the crowdion advances a lengthλ = 3, that is, three lattice units, but a single
particle just travels a single lattice unit. Therefore the average velocity of a particle
<Vp > is three times smaller than the crowdion velocityVc. It is worth mentioning
that Fig. 8 also shows that only the two particles participating in the kink motion
are mostly involved in the motion at the same time, as the fundamental ansatz with
sinusoidal waveform, Eq. 5 withq= 2π/3 predicts [14,15].

4 Kinks with substrate potential: the crowdion

The introduction of a substrate potential also modifies substantially the behaviour of
the particles in the kink. The phaseφ(n, t) is still very useful for the interpretation of
the movement of the particles. The crowdion, of ultradiscrete kink of fixed velocity
and energy that appears in the simulations corresponds basically to themagic mode
but with some differences. Considering the white ball in Fig. 8 and denoting it byn,
it basically does not move fromt ∈ [−3T/6,−T/6] as the Coulomb repulsion from
particlen−1 is weak. For times close tot = 0 when the strong ZBL potential acts,
it receives most of its momentum which it will transfer in duecourse to the follow-
ing particlen+1. However, in between, it will have to overcome the barrier of the
potential, experiencing a deceleration and afterwards an acceleration while going
downhill. Eventually the acceleration becomes negative asit experiences the ZBL
repulsion from the particlen+1 ahead. The ascending and descending of the poten-
tial barrier by the particle produces a remarkable change inthe particle displacement
un and strainvn = un−un+1 as shown in Figs. 9. The kink has been converted into
a double kink: the first kink corresponds to the translation of a particle from the
well bottom to the top of the nearest potential barrier and the second kink to the
subsequent displacement to the following well bottom.
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Fig. 9 Comparison of the ultradiscrete kink defined with the fundamental ansatz in Eq. 5 withA=
2/3 andq= 2π/3 with the ultradiscrete kink with fixed velocity obtained inthe simulations dubbed
crowdion in this work. Dashed lines: ansatz, continuous lines: crowdion. The displacementsun

correspond to the upper curves while the strainsvn = un − un−1 correspond to the lower curve.
The kink transforms into a double kink because the displacement between two equilibrium sites
is divided by the nonequilibrium position at the top of the potential well as can be seen in Fig. 8.
The magnitudesun andvn are given in lattice unitsa= 5.19Å. The compression time is given by
T = 1.095 or 0.22 ps in physical units

We would also like to mention in connection with Fig. 9, that the fundamental
ansatz with sinusoidal waveform, Eq. (5) forq= 2π/3, and corresponding dashed
lines in these figures give much better agreement with the simulations of supersonic
kink motion in the Fermi-Pasta-Ulam lattice without substrate [15]. The deviation
from the ansatz prediction in Fig. 9 is caused only by the presence of the substrate
because the ansatz was originally proposed for the translationally-invariant Fermi-
Pasta-Ulam lattice [14,15].

The separation from the ideal functions of the ansatz can also be seen in Fig. 10
where the displacements are shown at a given time. It can be observed that the de-
viation from the magic mode are important qualitatively butnot so much quantita-
tively. A more significant difference appears in the velocities which are represented
in Ref. [3] but can also be seen easily in the slope of Fig. 9. According to Eq. (10)
the maximum particle velocity using the ansatz isωA/2= 1.91 or 5 km/s, while for
the observed one for the crowdion it is 2.9 in scaled units or 7.6 km/s attained when
the particle is going uphill or downhill. The minimum particle velocity is achieved
at the top of the barrier.



A supersonic crowdion in mica 15

n−3 n−2 n−1  n  n+1 n+2
−1

0

1 (c)

n−3 n−2

(a)

n−1  n  n+1 n+2
−1

0

1

n−3 n−2 n−1  n  n+1 n+2
−1

0

1 (b)

Fig. 10 Three plots at different times (a)t ≃−T/6 (b)t ≃−0.5T/6 (c)t ≃0. They show the profile
of the displacementsun (upper curves) and strainsvn = un −un−1 (lower curves) with respect to
the particle and bond indexn. The continuous lines represent the theoretical ansatz Eq.(5) and the
circles represent the points corresponding to the numerical simulation of the crowdion. Timet = 0
corresponds to the maximum compression of bondn. The variablesun andvn are given in lattice
unitsa = 5.19Å. Every T/6 the theoretical and numerical solutions becomes almost identical as
can also be seen in Fig. 9. Subfigure (b) represents the maximum separation from the theoretical
curves

5 Phonons and crowdions

The introduction of the substrate potential brings about significant changes in the
system, not only for the kinks but also for the phonon spectrum. We first review
the properties of phonons in a system with substrate potential and then use them to
analyze the phonon tail of the crowdion.

5.1 Phonons in presence of a substrate potential

The dynamical equations for small perturbations become

ün =−ω2
0un+ c2

s(un+1+un−1−2un) , (11)

with cs=
√

2. The linearization of the coupling terms come only from theCoulomb
one. The ZBL potential does not appear because it is zero for small oscillations. The
substrate potential has been reduced to a harmonic one expanding the sinusoidal
functions. The value ofω0 is obtained using the values of the Fourier coefficients of
the substrate potential in Eq. (4)

ω2
0 =−

4

∑
m=1

(2πm)2Um. (12)
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Fig. 11 (a) Dispersion relation, (b) phase velocity and (c) group velocity. The three plots are for
longitudinal phonons in a potassium row for the system without substrate (dashed line) and with
substrate (continuous line). Scaled units are approximately 5 THz for frequency and 2.6 km/s for
velocities. White circles are measurements from differentnumerical simulations. The black circles
are the theoretical values for the phonon tail obtained by making the phonon phase velocity equal
to the crowdion velocity

The resulting numerical value isω0 = 4.48 in scaled units, corresponding to 3.6 THz
or 119 cm−1. The coefficientcs =

√
2 or 3.7 km/s in physical units is the speed of

sound in the system without substrate.
Substitution ofun = exp(i(qn−ωt)) leads to

−ω2 =−ω2
0 + c2

s(e
iq+e−iq−2) . (13)

From this equation it is easy to obtain the phonon spectrum, the phonon velocities
and the group phonon velocities. They are given by

ω2 = ω2
0 +4c2

s sin2(
q
2
) ; Vphase=

ω
q

Vg =
dω
dq

=
c2

s sinq
√

ω2
0 +4c2

s sin2(
q
2)

. (14)

The corresponding equations for the system without substrate are identical with
ω0 = 0. In this casecs is both the phase and group velocity in the long-wavelength
limit (q→ 0).

For the system with substrateω0 is the lowest phonon frequency, corresponding
to the long wavelength limit (q→ 0). This can be seen in Fig. 11 where the disper-
sion relation, the phase and the group velocities are shown.Note the main changes
produced by the introduction of the substrate potential: (a) the phonon spectrum
becomes optical, i.e., bounded from below, (b) the phase velocity diverges when
q→ 0, and (c) the group velocity becomes zero both atq= 0 andq= π and has a
maximum close toq= π/2 but with a much lower velocity.

The value of the wavevectorq corresponding to the maximum group velocity
can be calculated as it corresponds to dVg/dq= 0. Equivalently it corresponds to
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the maximum of the function

f (q) =
V2

g

c4 =
sin2(q)

ω2
0 +2c2

s(1− cos(q))
, (15)

where we have used that 2sin2(q/2) = 1− cos(q). Then

d f (q)
dq

=
2sin(q)cos(q)[ω2

0 +2c2
s−2c2

s cos(q)]− sin2(q)[2c2
s sin(q)]

ω2
0 +2c2

s−2c2
s cos(q)

. (16)

Making the numerator equal to zero, we obtain:

(ω2
0 +2c2

s)cos(q)−2c2
s cos2(q)− c2

s sin2(q) = 0, (17)

which leads to a second order equation in cos(q)

c2
s cos2(q)− (ω2

0 +2c2
s)cos(q)+ c2

s = 0, (18)

with solution

cos(q) =
ω2

0 +2c2
s±

√

ω4
0 +4ω2

0c2
s

2c2
s

. (19)

For the values in the present system, only the minus sign gives a real value ofq=
1.4870 rad corresponding to a wavelengthλ = 4.2253, and maximum group velocity
Vg,M = 0.4091.

5.2 Crowdion phonon tail

When the kink is produced, its amplitude diminishes towardsthe crowdion’s one in
an asymptotic way. Therefore after some time, the nonlinearwaves are no longer
produced but there is always a linear vibration left behind although with decreas-
ingly smaller amplitude. This is why the crowdion continuespropagating. The tail
is a plane wave and as such does not transport energy, but theoretically could be
measured to detect crowdion properties. We will call it thephonon tail. Note that
the velocity to describe these plane waves is the phase velocity and which in this
case is unbounded. The crowdion is moving at speedVc and leaves at each site some
small perturbation exactly at the same estate at times separated byδ t = 1/Vc. In
other words, the phase velocity of the phonon tailV is the same as the velocity of
the crowdionVc .

Vphase=Vc = 2.7387 (7.2 km/s) (Phonon tail) . (20)

The wave number of the tail can be obtained from the equationVphase= Vc =

w/q = [ω2
0 + 4sin2(q/2)]1/2/q, which can be solved numerically or graphically
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Fig. 12 (Left ) Plot ofcn+n where the double soliton structure, period and other crowdion param-
eters can be appreciated. (Right) Phonon tail amplified 50 times. It is a perfect plane wave with
parameters with the same velocity of the crowdionV = Vc and similar parameters although not
identicalT & Tc,q & qc,λ & λc. Note that this parameters are not well defined for the crowdion
and only approximate

from Fig. 11(b). The result isq= 1.8290= 0.5822π and thereforeω = qVc = 5.00,
T = 2π/ω = 1.2544 andλ = 2π/q= 3.44. So the parameters are very close to the
ωc , Tc andλc of the crowdion. In some sense, they can be considered as the actual
parameters of the crowdion as they can be measured. Note thatthese parameters,
asλc are not well defined as they depend on the algorithm used to fit the numerical
solutions. Figure 12 represents a picture ofcn and a view of the phonon tail forun,
similar tocn where the perfect plane wave and its parameters can be appreciated.

6 Excess energy and thermalized medium

In this section we present the results of different simulations to show the capacity
of the crowdions to survive a perturbed environment when larger energy is initially
delivered and, second, the behaviour of the crowdions with temperature.

6.1 Excess energy

We present some examples of simulations when the lattice is given more energy
than the 26.2 eV needed to produce the supersonic crowdion. The energies range
from 130 eV to 520 eV. They are represented in Fig. 13. In (a) a single crowdion is
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Fig. 13 (Color) Particle energy plots of several examples of crowdion formation in arbitrary units
of ≃ 3 eV. Initial energy increases form (a) to (f). Many featurescan be observed, among them the
specific velocity of the crowdionVc, the formation of nonlinear waves and phonons, the formation
of two crowdions and the survival of the crowdion in the severely perturbed media for hundreds of
sites
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formed after nonlinear waves are emitted. In (b) two crowdions are formed leaving
behind an stationary linear wave. Note how the second crowdion survives to the tail
of the first and the common velocityVc of both. In (c) the excessive energy destroys
the second crowdion which transforms into a highly localized nonlinear stationary
wave. In (d) the second crowdion survives again, while in (e)it is again destroyed.
Extensive phonon radiation and wandering kinks can be seen in the latter figure. In
(f) a second crowdion survives for 150 sites in a highly perturbed media but it is
finally pinned down.

6.2 Thermalized medium

An interesting question is whether the crowdion can travel trough a previously ther-
malized medium. This is not only a question of general interest but particulary im-
portant for mica muscovite. As it has been calculated in Ref.Tracks in mica: 50
years later[27], the recording process of tracks happens a few kilometers under-
ground under large pressure and temperatures of 700-1000K.Although much more
work is necessary, the answer is positive. For comparison Fig. 14 (a-b) shows two
simulations at 300 K and 1000 K in the system without substrate potential where
the kink survives over hundreds of lattice sites. It is not really surprising as, if we
compare the energy of the crowdion 26.2 eV with the mean thermal energy of a par-
ticle kBT, the crowdion energy is 1000 and 300 times larger at 300 K and 1000 K,
respectively.

In the case of including the substrate potential, as shown inFig. 14 (c-d) for
300 K and 1000 K respectively, the crowdion can also travel for hundreds of sites
of the previously thermalized media. As it was studied in Ref. [3], the crowdion al-
ways has finite kinetic energy, but the final total energy of the kink,Ek, is always of
the order of magnitude of the Peierls-Nabarro (PN) barrier.The equivalent kinetic
energy equivalent for the thermalized media is 0.005 (0.013eV) at 300 K and 0.016
(0.043eV) at 1000 K in normalized and physical units . These values are far be-
low the energy difference between the PN barrier and the kinkenergy. However, in
some simulations, for temperatures of 1000 K the thermalization is not completely
achieved due to appearance of nonlinear waves instead of phonons. Therefore, lo-
calized peaks of the background vibrations can interfere with the crowdion where,
in some cases, it can be trapped leading to a highly localizednonlinear stationary
perturbation. Figure 14 (d) shows and example of this situation, where the crowdion
is eventually trapped forming an interstitial defect.

Thermal effects discussed in this section lead to differentsurvival path lengths of
the crowdions. If the hypothesis of crowdions propagating in mica muscovite is cor-
rect, they might be related with some of the tracks observed in the mineral. Other
feature of the presented simulations worth remarking on is that the high equiva-
lent temperature of the nonlinear tail radiation of the crowdion is likely to favour a
change of structure and the formation of tracks.
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Fig. 14 (Color) Particle energy plots of two crowdions travelling in a previously thermalized
medium at (a,c) 300 K and (b,d) 1000 K, top without and bottom with substrate potential. Color
bars are in 10log10(E) units
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7 Recoil energy of40K

If the hypothesis of quodons being vibrational entities of ions of potassium is cor-
rect, the most likely source of energy is the recoil from40K because a) the energy
will be given directly to the potassium ion K+ , b) the relative abundance and decay
frequency of40K, and c) because of the energies involved as explained below.

The two most abundant isotopes of potassium are the stable39K and41K isotopes,
with 93.7% and 6.7% abundance respectively. The next most abundant isotope is
40K with a very long half life of 1.248×109 years and abundance of 0.0117%. This
isotope is the most important source of radioactivity for humans.

As shown in Fig. 15 and table 2, the nucleus40K experiences decay through dif-
ferent branches with two daughter nuclei40Ca and40Ar [4,20]. The main parameters
of the decay areI , the intensity of a given branch in % andQ, which is the difference
between the rest masses of the parent and daughteratoms. The difference of mass
between atoms is better tabulated than between nuclei. As the atoms are neutral the
mass difference between nuclei has to take into account the difference in the number
of electrons in the neutral atoms. The available energy willdepend on the rest mass
of the parent and daughter nuclei and other particles. It will be obtained below for
each type of decay.

The decay branches,β− andβ+ involve the emission of an electron or a positron
and a neutrino. The electron or positron velocities are suchthat they have to be
treated relativistically, while the recoil velocity of themuch heavier nuclei can be

Fig. 15 Sketch showing the different decays and branching of40K. Reproduced with permission
from: Pradler, J., Singh, B., Yavin, I.: On an unverified nuclear decay and its role in the DAMA
experiment. Phys. Lett. B720(4-5), 399-.404 (2013). Copyright Creative Commons BY 3.0
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described classically. We will suppose an electron to simplify the language, but a
positron can be equally described in what follows. The maximum recoil energy of
the nucleus is obtained when the neutrino gets no kinetic energy. The recoil energy
is much smaller than the electron energy, so it can be neglected in the energy cal-
culations while due to its large mass, it is essential for themomenta balance. The
electron maximum energy isEe= mec2+E, beingE the available energy in the de-
cay, andE2

e = m2
ec4+ p2

ec2, wherepe is the momentum of the electron. Considering
the parent nucleus at rest, the momentum of the nucleus is identical to the momen-
tum of the electronpN = pe=(1/c)(E2

e−m2
ec4)1/2 and the maximum nucleus recoil

energy is given byEN = p2
N/(2mN). The decays always involve the emission of a

neutrino and may include the emission of a photon, eitherγ from the nucleus of X
from the electron shell, although the latter have much smaller energy and momen-
tum and will be of no importance for K+ recoil. The neutrino can be considered as
a massless particle as its rest mass it known to be below 2.2 eV/c2. Therefore for
photons or neutrinos their energy is given byEν,γ,X = pc. If only a photon or a neu-
trino is emitted the recoil momentumpN is equal to the momentum of the photon or
neutrino and triviallyEN = P2

N/(2mN). If there are only two daughter particles the
recoil energyEN has a single value.

Other data of interest are the ionization energies of K and ofthe daughter nuclei.
If the recoil energy is larger than the ionization energy of the atoms that interact,
it can be used to ionize an atom or ion and the energy cannot be transferred to the
neighbours. The ionization energies of the daughter atoms from 40K decay can be
seen in table 1. A examination of the possible ionization processes is done in the
following subsection.

Table 1 Table of ionization energies (eV) of atoms involved in40K decay [17]

Element I II III IV V

Ar 15.76 27.63 40.74 59.81 75.02
K 4.34 31.63 45.81 60.91 82.66
Ca 6.11 11.87 50.91 67.27 84.50

As the lattice is formed by K+ , it is probable that the second ionization of K,
31.6 eV, is an upper limit for crowdions or single row kink energies.

7.1 40K decay branches

Here, we analyze in detail the different decay branches. A summary if presented in
table 2.

The40K decay branch that leads to40Ca is:
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β− decay:

β−: Decay with emission of an electron.
With Iβ− = 89.25% and mass difference between atomsQ= 1311.07keV [20].
As the Ca atom has an extra electron, discarding the electronbinding energy of a
few keV, the mass difference between nuclei isQ+mec2 and the energy available
when emitting an electron isE ≃ Q+mec2−mec2 ≃ Q which will be shared be-
tween the electron and the antineutrino emitted. Therefore, the maximum kinetic
energy of the electron orendpointis almost equal toQ. The daughter nuclei of
40Ca have a continuous distribution of energy with a maximum ofEk = 42 eV at
the endpoint corresponding to a velocityV = 14.4 km/s.
The proton number increases by one, but the number of electrons does not
change, therefore the daughter ion would be Ca++ with 50.6 eV third ioniza-
tion energy. This is a likely origin of quodons for the decayswith recoil energy
smaller than the 31.6 eV K second ionization energy. The recoils with larger en-
ergy will be able to deliver up to 10.4 eV after the first collision that could pro-
duce breathers but not crowdions.

The following processes have40Ar as daughter nuclei being the difference between
the atomicmassesQ = 1504.69keV. As the Ar atom has an electron less than K,
discarding the electron binding energies the mass difference between nuclei is≃
Q−mec2 and the energy available depends on the specific decay.

EC1:Electron capture with decay to40Ar excited state andγ radiation.
With Iε = 10.55%, an electron from the shell is captured, therefore the available
energy isE ≃ Q−mec2+mec2 ≃ Q. In this decay a monoenergetic neutrino of
44 keV is emitted with negligible recoil (26 meV) and the daughter nucleus is in
an excited state. Thereafter, the excited nucleus decays tothe ground state with
the emission of a 1460keVγ ray [20]. The corresponding K+ recoil energy of
40Ar is Ek ≃ 29.2 eV with velocityV = 12.0 km/s. As this is a two body process
Ek has only slight variations due to interactions with the shell electrons.
As no charge is emitted from the ion K+ , the daughter will also be a monovalent
ion of Ar+, with 27.7 eV second ionization energy. So there is some probabil-
ity that the first Ar+ collision with K+ will further ionize Ar+. The remaining
energy 1.3 eV will not be enough to produce a kink but may produce a breather.

EC1+CE:Electron capture with decay to40Ar excited state and conversion electron.
This is actually a subset of the previous decay, but with a probability I=0.001 per
100 decays, the 1460 keVγ ray emitted can interact with the shell and deliver the
energy to an electron, called a conversion electron. Save for a few keV of binding
energy theγ energy is converted into kinetic energy of the electron, with a recoil
for the ion of 49.7 eV and 15.6 km/s. This is the largest energyof all the recoils.
As an electron has been emitted from the shell, the daughter ion will be Ar++

with 40.8 eV third ionization energy. This ionization and the 31.6 eV second one
of K+ are likely to occur. The remaining energies of 8.8 or 18 eV cannot produce
a crowdion but will be able to produce breathers.
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EC2:Electron capture with direct decay to40Ar ground state.
With probabilityI = 0.2%, the energy available as in the decay above isE ≃Q=
1504.69. There is a direct decay to the ground state of40Ar after the capture of
a shell electron and the emission of a monoenergetic neutrino that takes most of
the energy availableE ≃ 1504.69keV minus the electron binding energy which
is only a few keV [21,34]. The recoil energy is 31.1 eV. The shell emits a 3 keV
Auger electron when another electron of the shell occupies the vacancy left by
the captured electron, however, this has a negligible recoil.
The daughter nucleus has lost a positive unit charge but alsothe shell has lost two
electrons, the captured one plus the Auger electron. Therefore the daughter ion
will be Ar++, which has too little energy for further ionization of Ar++ or K+

which need 40.8 and 31.6 eV, respectively. Therefore, it would be a likely source
of crowdions but difficult to distinguish from theβ− recoil.

β+: decay with positron emission.
With very low probabilityIβ+ = 0.001%, the available energy is the mass dif-
ference between nuclei minus the mass energy of the positronemitted, that is,
E ≃ Q−mec2 −mec2 = Q− 2mec2 = 483.7keV. The energyE is shared be-
tween a neutrino, the emitted positron and the daughter nucleus. Therefore,
the positrons have a continuum of energies with a maximum oneor endpoint
483.7keV [4, 8, 20], which leads to the maximum recoil energyEk ≃ 10 eV and
velocity of 7 km/s.
As the atomic number is decreased by one unit toZ−1, the initial ion K+ has lost
a positive unit charge, but there has been no change in the number of electrons,
thus the daughter ion will be a neutral Ar interacting with short range forces with
the neighbouring K+. The first ionization energy of Ar is 15.8 eV, so, actually, the
Ar atom has less of the required energy for ionizing itself orfor further ionization
of K+ and will be able to keep the 10 eV energy. This seems too littleto produce

Table 2 Table of decays for40K

Decay β− EC1 EC1+CE1 EC22 β+

Intensity 89.25% 10.55% 0.001% 0.2% 0.001%
T (keV) 1311.07 1460 1460 1504.69 483.7
Emitted charged particle e− e− e− e+

Recoil from ν+e− γ e− ν ν+e+

Max Recoil (eV) 42 29.2M 49.7M 31.1M 10
Daugther ion (A=40) Ca++ Ar+ Ar++ Ar++ Ar
Max V (Km/s) 14.4 12M 15.7M 12.2M 7
Ionization of daughter (eV) 50.6 27.7 40.8 40.8 15.8
∆q (e) +1 0 +1 +1 -1

1 Subset of EC1 when the gamma is delivered to a shell electron; M Monocromatic
2 Direct decay to Ar ground state, recoil from neutrino emission; 3 KeV Auger e−

EC: electron capture; CE: conversion electron; T: energy available excluding rest masses
Ionization energy of K+ 31.6 eV
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a kink but may produce a breather. Due to their positive charge, positrons leave
tracks in mica muscovite [25,35].

A study with the correlation of positron tracks, thickness distribution of quodon
tracks and other characteristics could make it possible to confirm the nature and
characteristics of quodons. SeeTracks in mica: 50 years laterfor more details [27].

7.2 Secondary processes

Electron–positron pair production:
This is a secondary process after theγ ray emission of 1460.82keV considered
above [8]. It needs the interaction of theγ ray with a nucleus, and the produced
positron and electron can share the energy in any proportion. The maximum re-
coil energy corresponds to a single particle taking almost all the energy except
for the small amount taken by the nucleus, which is necessarydue to momentum
conservation. The available kinetic energy isE = Eγ −2mec2 = 437.4 keV and
the maximum recoil energy isEk = 8.8 eV. The probability of the combined pro-
cess of electron capture and pair production is of the same order of magnitude as
β+ emission and also the energies are similar [8]. The probability of interaction
of theγ ray with a nucleus is proportional toZ2 which favors the interaction with
potassium; however, potassium atoms are only 5% of the atomsin mica.
As the energy is smaller than the second ionization energy ofK of 31.6 eV it is
likely that the subsequent K+ –K+ collisions are elastic.

Other secondary processes may also occur via other radioactive nuclei and their
corresponding decay, but it will be beyond the objective of this work to continue the
subject further.

8 Summary

In this work we have described in detail the magic mode for thestrain or compres-
sion of the bonds. A construction in terms of phasors has beendeveloped in order
to obtain an intuition of the relative phases and behaviour of the particles as the
kink passes over them. We have considered an 1D model for the close-packed lines
of potassium ions inside a cation layer of mica muscovite using realistic potentials.
There exists only a single kink with a specific velocity and energy dubbed the crow-
dion. It is relatively well described by the magic mode but the kink is transformed
into a double kink. It leaves behind a phonon wave with exponentially diminishing
amplitude that travels at the same velocity as that of the kink. Simulations with dif-
ferent initial energies bring about a variety of phenomena including the formation
of two crowdions that leave behind nonlinear waves and phonons. The crowdions
also survive at temperatures of 300-1000K. Finally, an analysis of the possible de-
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cay modes of40K has been performed including their possible consequenceswith
respect to crowdion formation. A careful study of the tracksin mica muscovite com-
pared with the decay modes can shed light on their characteristics and origin.

The energy of the kinks or crowdions described in this work can be provided by
the40K decay and is enough to expel an atom at the border. The crowdions survive
to high temperature and travel long distances. They transport positive charge and
therefore are very likely to be recorded in the form of dark tracks in mica muscovite.
If they are the cause of the quodons or other marks observed inthis mineral is still
an open question.

Acknowledgments

J.F.R.A., V.S.M., and L.M.G.R. acknowledge financial support from the projects
FIS2008-04848, FIS2011-29731- C02-02, and MTM2012-36740-C02-02 from Mi-
nisterio de Ciencia e Innovación (MICINN). All authors acknowledge Prof. F.M.
Russell for ongoing discussions.

References
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33. Schlößer, D., Kroneberger, K., Schosnig, M., Russell,F.M., Groeneveld, K.O.: Search for
solitons in solids. Rad. Meas23, 209–213 (1994)

34. Sinev, V.V., Bezrukov, L.B., Litvinovich, E.A., Machulin, I.N., Skorokhvatov, M.D., Sukhotin,
S.V.: Looking for antineutrino flux from 40K with large liquid scintillator detector. Phys. Part.
Nuclei 46(2), 186–189 (2015)

35. Steeds, J.W., Russell, F.M., Vine, W.J.: Formation of epidote fossil positron tracks in mica.
Optik 92, 149–154 (1993)

36. Ziegler, J.F., Biersack, J.P., Ziegler, M.D.: SRIM - TheStopping and Range of Ions in Matter.
Published by James Ziegler, Chester, Maryland (2008)

37. Zolotaryuk, Y., Eilbeck, J.C., Savin, A.V.: Bound states of lattice solitons and their bifurca-
tions. Physica D108, 81–91 (1997)


	A supersonic crowdion in mica
	J.F.R. Archilla, Yu.A. Kosevich, N. Jiménez, V.J. Sánchez-Morcillo and L.M. García-Raffi
	1 Introduction
	2 Description of the system
	3 The magic mode revisited
	3.1 Basic variables
	3.2 Fundamental ansatz
	3.3 Phasors for the magic mode

	4 Kinks with substrate potential: the crowdion
	5 Phonons and crowdions
	5.1 Phonons in presence of a substrate potential
	5.2 Crowdion phonon tail

	6 Excess energy and thermalized medium
	6.1 Excess energy
	6.2 Thermalized medium

	7 Recoil energy of 40K
	7.1 40K decay branches
	7.2 Secondary processes

	8 Summary
	References



