662 research outputs found
3D Model compression using Connectivity-Guided Adaptive Wavelet Transform built into 2D SPIHT
Cataloged from PDF version of article.Connectivity-Guided Adaptive Wavelet Transform based mesh compression framework is proposed. The transformation uses the connectivity information of the 3D model to exploit the inter-pixel correlations. Orthographic projection is used for converting the 3D mesh into a 2D image-like representation. The proposed conversion method does not change the connectivity among the vertices of the 3D model. There is a correlation between the pixels of the composed image due to the connectivity of the 3D mesh. The proposed wavelet transform uses an adaptive predictor that exploits the connectivity information of the 3D model. Known image compression tools cannot take advantage of the correlations between the samples. The wavelet transformed data is then encoded using a zero-tree wavelet based method. Since the encoder creates a hierarchical bitstream, the proposed technique is a progressive mesh compression technique. Experimental results show that the proposed method has a better rate distortion performance than MPEG-3DGC/MPEG-4 mesh coder. © 2009 Elsevier Inc. All rights reserved
Entropy-Functional-Based Online Adaptive Decision Fusion Framework with Application to Wildfire Detection in Video
Cataloged from PDF version of article.In this paper, an entropy-functional-based online adaptive decision fusion (EADF) framework is developed for image analysis and computer vision applications. In this framework, it is assumed that the compound algorithm consists of several subalgorithms, each of which yields its own decision as a real number centered around zero, representing the confidence level of that particular subalgorithm. Decision values are linearly combined with weights that are updated online according to an active fusion method based on performing entropic projections onto convex sets describing subalgorithms. It is assumed that there is an oracle, who is usually a human operator, providing feedback to the decision fusion method. A video-based wildfire detection system was developed to evaluate the performance of the decision fusion algorithm. In this case, image data arrive sequentially, and the oracle is the security guard of the forest lookout tower, verifying the decision of the combined algorithm. The simulation results are presented
First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers
Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the
future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow
LArTPCs to operate in the high-multiplicity near detector environment of DUNE,
a new charge readout technology is required. Traditional charge readout
technologies introduce intrinsic ambiguities, combined with a slow detector
response, these ambiguities have limited the performance of LArTPCs, until now.
Here, we present a novel pixelated charge readout that enables the full 3D
tracking capabilities of LArTPCs. We characterise the signal to noise ratio of
charge readout chain, to be about 14, and demonstrate track reconstruction on
3D space points produced by the pixel readout. This pixelated charge readout
makes LArTPCs a viable option for the DUNE near detector complex.Comment: 13 pages, 9 figure
Wavelet based flickering flame detector using differential PIR sensors
Cataloged from PDF version of article.A Pyro-electric Infrared (PIR) sensor based flame detection system is proposed using a Markovian
decision algorithm. A differential PIR sensor is only sensitive to sudden temperature variations within
its viewing range and it produces a time-varying signal. The wavelet transform of the PIR sensor signal
is used for feature extraction from sensor signal and wavelet parameters are fed to a set of Markov
models corresponding to the flame flicker process of an uncontrolled fire, ordinary activity of human
beings and other objects. The final decision is reached based on the model yielding the highest
probability among others. Comparative results show that the system can be used for fire detection in
large rooms.
(C) 2012 Elsevier Ltd. All rights reserved
Nutritional status in Turkish cystic fibrosis patients
Digitalitzat per Artypla
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS
Tensions in several phenomenological models grew with experimental results on
neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent,
carefully recomputed, antineutrino fluxes from nuclear reactors. At a
refurbished SBL CERN-PS facility an experiment aimed to address the open issues
has been proposed [1], based on the technology of imaging in ultra-pure
cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of
the physics case was performed. We tackled specific physics models and we
optimized the neutrino beam through a full simulation. Experimental aspects not
fully covered by the LAr detection, i.e. the measurements of the lepton charge
on event-by-event basis and their energy over a wide range, were also
investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino
interactions play an important role in disentangling different phenomenological
scenarios provided their charge state is determined. Also, the study of muon
appearance/disappearance can benefit of the large statistics of CC muon events
from the primary neutrino beam. Results of our study are reported in detail in
this proposal. We aim to design, construct and install two Spectrometers at
"NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed
LAr detectors. Profiting of the large mass of the two Spectrometers their
stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
- …