53 research outputs found

    Power-law persistence and trends in the atmosphere: A detailed study of long temperature records

    Full text link
    We use several variants of the detrended fluctuation analysis to study the appearance of long-term persistence in temperature records, obtained at 95 stations all over the globe. Our results basically confirm earlier studies. We find that the persistence, characterized by the correlation C(s) of temperature variations separated by s days, decays for large s as a power law, C(s) ~ s^(-gamma). For continental stations, including stations along the coastlines, we find that gamma is always close to 0.7. For stations on islands, we find that gamma ranges between 0.3 and 0.7, with a maximum at gamma = 0.4. This is consistent with earlier studies of the persistence in sea surface temperature records where gamma is close to 0.4. In all cases, the exponent gamma does not depend on the distance of the stations to the continental coastlines. By varying the degree of detrending in the fluctuation analysis we obtain also information about trends in the temperature records.Comment: 5 pages, 4 including eps figure

    Global climate models violate scaling of the observed atmospheric variability

    Full text link
    We test the scaling performance of seven leading global climate models by using detrended fluctuation analysis. We analyse temperature records of six representative sites around the globe simulated by the models, for two different scenarios: (i) with greenhouse gas forcing only and (ii) with greenhouse gas plus aerosol forcing. We find that the simulated records for both scenarios fail to reproduce the universal scaling behavior of the observed records, and display wide performance differences. The deviations from the scaling behavior are more pronounced in the first scenario, where also the trends are clearly overestimated.Comment: Accepted for publishing in Physical Review Letter

    Detrended fluctuation analysis as a statistical tool to monitor the climate

    Full text link
    Detrended fluctuation analysis is used to investigate power law relationship between the monthly averages of the maximum daily temperatures for different locations in the western US. On the map created by the power law exponents, we can distinguish different geographical regions with different power law exponents. When the power law exponents obtained from the detrended fluctuation analysis are plotted versus the standard deviation of the temperature fluctuations, we observe different data points belonging to the different climates, hence indicating that by observing the long-time trends in the fluctuations of temperature we can distinguish between different climates.Comment: 8 pages, 4 figures, submitted to JSTA

    Nonlinear Volatility of River Flux Fluctuations

    Full text link
    We study the spectral properties of the magnitudes of river flux increments, the volatility. The volatility series exhibits (i) strong seasonal periodicity and (ii) strongly power-law correlations for time scales less than one year. We test the nonlinear properties of the river flux increment series by randomizing its Fourier phases and find that the surrogate volatility series (i) has almost no seasonal periodicity and (ii) is weakly correlated for time scales less than one year. We quantify the degree of nonlinearity by measuring (i) the amplitude of the power spectrum at the seasonal peak and (ii) the correlation power-law exponent of the volatility series.Comment: 5 revtex pages, 6 page

    Time correlations and 1/f behavior in backscattering radar reflectivity measurements from cirrus cloud ice fluctuations

    Full text link
    The state of the atmosphere is governed by the classical laws of fluid motion and exhibits correlations in various spatial and temporal scales. These correlations are crucial to understand the short and long term trends in climate. Cirrus clouds are important ingredients of the atmospheric boundary layer. To improve future parameterization of cirrus clouds in climate models, it is important to understand the cloud properties and how they change within the cloud. We study correlations in the fluctuations of radar signals obtained at isodepths of winter and fall cirrus clouds. In particular we focus on three quantities: (i) the backscattering cross-section, (ii) the Doppler velocity and (iii) the Doppler spectral width. They correspond to the physical coefficients used in Navier Stokes equations to describe flows, i.e. bulk modulus, viscosity, and thermal conductivity. In all cases we find that power-law time correlations exist with a crossover between regimes at about 3 to 5 min. We also find that different type of correlations, including 1/f behavior, characterize the top and the bottom layers and the bulk of the clouds. The underlying mechanisms for such correlations are suggested to originate in ice nucleation and crystal growth processes.Comment: 33 pages, 9 figures; to appear in the Journal of Geophysical Research - Atmosphere

    Effect of Trends on Detrended Fluctuation Analysis

    Get PDF
    Detrended fluctuation analysis (DFA) is a scaling analysis method used to estimate long-range power-law correlation exponents in noisy signals. Many noisy signals in real systems display trends, so that the scaling results obtained from the DFA method become difficult to analyze. We systematically study the effects of three types of trends -- linear, periodic, and power-law trends, and offer examples where these trends are likely to occur in real data. We compare the difference between the scaling results for artificially generated correlated noise and correlated noise with a trend, and study how trends lead to the appearance of crossovers in the scaling behavior. We find that crossovers result from the competition between the scaling of the noise and the ``apparent'' scaling of the trend. We study how the characteristics of these crossovers depend on (i) the slope of the linear trend; (ii) the amplitude and period of the periodic trend; (iii) the amplitude and power of the power-law trend and (iv) the length as well as the correlation properties of the noise. Surprisingly, we find that the crossovers in the scaling of noisy signals with trends also follow scaling laws -- i.e. long-range power-law dependence of the position of the crossover on the parameters of the trends. We show that the DFA result of noise with a trend can be exactly determined by the superposition of the separate results of the DFA on the noise and on the trend, assuming that the noise and the trend are not correlated. If this superposition rule is not followed, this is an indication that the noise and the superimposed trend are not independent, so that removing the trend could lead to changes in the correlation properties of the noise.Comment: 20 pages, 16 figure

    Effect of nonstationarities on detrended fluctuation analysis

    Full text link
    Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify long-range power-law correlations in signals. Many physical and biological signals are ``noisy'', heterogeneous and exhibit different types of nonstationarities, which can affect the correlation properties of these signals. We systematically study the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonstationary sequences formed in three ways: (i) stitching together segments of data obtained from discontinuous experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitching together the remaining parts -- a ``cutting'' procedure commonly used in preparing data prior to signal analysis; (ii) adding to a signal with known correlations a tunable concentration of random outliers or spikes with different amplitude, and (iii) generating a signal comprised of segments with different properties -- e.g. different standard deviations or different correlation exponents. We compare the difference between the scaling results obtained for stationary correlated signals and correlated signals with these three types of nonstationarities.Comment: 17 pages, 10 figures, corrected some typos, added one referenc

    Characterization of Sleep Stages by Correlations of Heartbeat Increments

    Full text link
    We study correlation properties of the magnitude and the sign of the increments in the time intervals between successive heartbeats during light sleep, deep sleep, and REM sleep using the detrended fluctuation analysis method. We find short-range anticorrelations in the sign time series, which are strong during deep sleep, weaker during light sleep and even weaker during REM sleep. In contrast, we find long-range positive correlations in the magnitude time series, which are strong during REM sleep and weaker during light sleep. We observe uncorrelated behavior for the magnitude during deep sleep. Since the magnitude series relates to the nonlinear properties of the original time series, while the signs series relates to the linear properties, our findings suggest that the nonlinear properties of the heartbeat dynamics are more pronounced during REM sleep. Thus, the sign and the magnitude series provide information which is useful in distinguishing between the sleep stages.Comment: 7 pages, 4 figures, revte
    corecore