119 research outputs found
The Influence of the Synthesis Parameters and Structure on the Electrical Properties of Ba0.77Sr0.23TiO3 Ceramics
Rezultati istraživanja u oblasti elektronske keramike u najveÄoj meri direktno zavise od poznavanja procesa konsolidacije (presovanje i sinterovanje) keramiÄkih prahova, Å”to, posmatrano sa glediÅ”ta poimanja prirode, ukazuje na univerzalnost ovoga procesa. Razvoj savremenih keramiÄkih materijala omoguÄen je zahvaljujuÄi multidisciplitarnom prouÄavanju i doprinosu istraživanja u razliÄitim oblastima kao Å”to su nauka o materijalima, fizika, hemija i elektronika. Rezultati nauÄnog i tehnoloÅ”kog istraživanja objavljuju se u razliÄitim nauÄnim publikacijama, Å”to je izraz velikog znaÄaja elektronske keramike u savremenoj tehnici. Prema aktuelnim nauÄnim istraživanjima koja se odnose na projektovanje i razvoj novih elektronskih keramiÄkih komponenti (izolatorska, termistorska, elektrooptiÄka, piezoelektriÄna keramika, memorijski ureÄaji na bazi feroelektriÄne keramike itd.), BST keramika kao i jedinjenja sa strukturom perovskita su od posebnog interesa. Kondenzatorska keramika na bazi BST obuhvata: visokofrekventne kondenzatore (promenljivi, nelinearni kondenzatori Äija se elektriÄna kapacitivnost jako menja sa promenom primenjenog napona), viÅ”eslojne kondenzatore sa relativnom dielektriÄnom konstantom Īµr (1-15)Ī103 (zastupljene u tehnologiji debeloslojnih hibridnih kola), Äip-kondenzatore sa barijernim slojem kod kojih je Īµr (20-80)Ī103, itd. U okviru ove grupe materijala, viÅ”eslojni keramiÄki kondenzatori (MLCCs - Multi Layer Ceramic Capacitor) su veÄ duže vreme jedan od najvažnijih i Å”iroko koriÅ”Äenih pasivnih komponenti u elektronskoj industriji. TakoÄe, BST je Å”iroko prouÄavan i razvijan za potencijalnu primenu u dinamiÄkim Ā«random accessĀ» memorijama i u NVRAM ureÄajima sa nedestruktivnom modom oÄitavanja. Tanki filmovi BST pokazuju prednosti u nizu primena, kako u memorijskim elementima u NVRAM i DRAM ureÄajima (u kompjuterima, mobilnim telefonima, digitalnim kamerama, MP3 plejerima i mnoÅ”tvu drugih portabl ureÄaja), tako i u elektrooptiÄkim prekidaÄima, optiÄkim talasovodima, piroelektriÄnim detektorima, optiÄkim modulatorima, itd. Barijum-stroncijum-titanat, Ba1-xSrxTiO3, (BST) je feroelektriÄni materijal sa tetragonalnom strukturom na sobnoj temperaturi za x<0,3, koji ima perovskitnu strukturu (ABO3). BST je Ävrst rastvor sastavljen od titanata, barijum-titanata (BaTiO3) i stroncijum-titanata (SrTiO3). BaTiO3 je feroelektriÄni materijal sa Kirijevom temperaturom (Tc =393K), dok je SrTiO3 paraelektriÄni materijal sa neferoelektriÄnim faznim transformacijama kod koga je Kiri temperatura (Tc =105K). Na sobnoj temperaturi za sistem Ävrstog rastvora u feroelektriÄnoj fazi sadržaj Ba je u opsegu od 0,7 do 1,0; dok je sadržaj Ba u paraelektriÄnoj fazi manji od 0,7. Kirijeva temperatura BST linearno opada sa poveÄanjem koncentracije Sr. Zbog toga Kiri temperatura BST a samim tim i njene osobine mogu biti prilagoÄene Å”irokom opsegu da bi se zadovoljili zahtevi razliÄitih primena. Ova vrsta fleksibilnosti osobina a samim tim i potencijalni opseg primene nije prisutan kod konvencionalne feroelektriÄne keramike. Postoji nekoliko razliÄitih metoda za sintezu praha Ba1-xSrxTiO3, bilo suvom ili mokrom hemijskom sintezom. Prva grupa metoda zasnovanih na reakcijama u Ävrstom stanju, su i najÄeÅ”Äe metode za dobijanje BST dok su u drugoj grupi ko-precipitacija, sprej piroliza i neke sol-gel tehnike. MeÄu njima su i hidrotermalne tehnike koje predstavljaju komercijalan naÄin za dobijanje datog materijala. Svaka od ovih metoda ima svoje prednosti i mane. Neke od tih prednosti su dobijanje superfinog praha visoke ÄistoÄe i nizak stepen aglomeracije, dok su nedostaci visoka temperatura kalcinacije (od 1000oC do 1200oC), zatim koriÅ”Äenje veÄe koliÄine poÄetnog praha, velika veliÄina zrna zbog Äega se ne mogu koristiti za dobijanje materijala sa velikom dielektriÄnom konstantom. U skorije vreme u cilju sniženja temperature kalcinacije i dobijanja materijala definisane mikrostrukture, sve viÅ”e se koristi i metoda mehaniÄke aktivacije. Cilj ovog rada je da pokaže uticaj mehaniÄke aktivacije i režima sinterovanja na promenu strukture i elektriÄna svojstva BST keramike. Na osnovu detaljne analize temperaturske zavisnosti, realne dielektriÄne propustljivosti i tangensa ugla gubitaka, kao i uticaja mehaniÄke aktivacije na promenu frekventnih karakteristika biÄe definisani optimalni tehnoloÅ”ki parametri za dobijanje Ba0,77Sr0,23TiO3 keramike unapreÄenih elektriÄnih karakteristika
Effect of WC on the Microstructure and Properties of Zirconium Diboride
Tungsten carbide (WC) additions, up to 5 wt%, were added to commercial zirconium diboride (ZrB2) powder. Densification was promoted by the addition of 0.5 wt% carbon. The powders with WC additions were hot-pressed at 2150Ā°C with a pressure of 32 MPa. Bulk densities were measured by the Archimedes method. Scanning electron microscopy was used to determine grain size and morphology, as well as whether any second phases were present. The crystalline phases present were determined by x-ray diffraction. Properties, including hardness, elastic modulus, strength, and thermal conductivity, were measured and will be discussed
Point defects and their effect on dielectric permittivity in strontium titanate ceramics
The origin of dielectric properties of strontium titanate ceramics is investigated using DFT calculations in periodic system. It was determined that the main factors contributing to the increase in dielectric permittivity are: tetragonal distortion of the normally cubic lattice, and charge imbalance induced displacement of titanium center from its central position. Oxygen vacancies were determined to create significantly larger effects than other types of vacancies, like Ti and SrO. The extent of tetragonal distortion was found to be determined by oxygen vacancy distribution, rather than total concentration: relatively symmetrical distribution of oxygen vacancies resulted in smaller tetragonal distortion of the lattice, and, consequently, smaller increase in dielectric permittivity. Charge imbalance naturally destabilizes the cubic lattice, forcing the Ti-atom out of its central position, resulting in tetragonal lattice with increased dielectric permittivity. The process stabilizes the strontium titanate lattice, while increasing the c/a ratio. Therefore, the dielectric permittivity of strontium titanate can be increased by changes to the system that increase tetragonal distortion of the lattice and/or introduce additional negative charge
Influence of Mechanical Activation on the Constituents of the MgO-Al2O3-SiO2-MoO3 System
Cordierite, 2MgOā¢2Al2O3ā¢5SiO2 (MAS), is high-temperature ceramic material. Cordierite is commonly used material because of outstanding electrical properties, low temperature expansion coefficient and low dielectric constant. In order to accelerate the process of sintering, 5.00 mass% MoO3 has been added to the starting mixtures. The mechanical activation of the starting mixtures was performed in a high energy ball mill during 0-160 minutes. All starting mixtures were sintered at 1100Ā°C, 1200Ā°C and 1300Ā°C for 2h. The particle size analysis (PSA) was employed in order to determine the changes in the particle size of the mechanically treated powders. The phase composition of the starting powders was analyzed by the X-ray diffraction method. Differential thermal (DTA) and thermogravimetric (TG) analysis were used in order to determine characteristic temperatures within the system during heating. Based on the obtained DTA results, it was established that mechanical activation with additive MoO3, has influence on decreasing sintering temperatures for about 150Ā°C
The Influence of Mechanical Activation on Sintering Process of BaCO3-SrCO3-TiO2 System
In this article the influence of mechanical activation on sintering process of barium-strontiumtitanate ceramics has been investigated. Both non-activated and mixtures treated in planetary ball mill for 5, 10, 20, 40, 80 and 120 minutes were sintered at 1100-1400 Ā°C for 2 hours in air atmosphere. The influence of mechanical activation on phase composition and crystal structure has been analyzed by XRD, while the effect of activation and sintering process on microstructure was investigated by scanning electron microscopy. It has been established that temperature of 1100 Ā°C was to low to induce final sintering stage for the system. Electrical measurements have been conducted for the densest ceramics sintered at 1400 Ā°C for 2 hours
Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation
Mechanical activation of a mixture of polycrystalline powders Fe3O4 (50% wt.) and BaTiO3 (50% wt.) was performed in a planetary ball-mill, with different milling times (3 h, 6 h and 12 h). Average crystallite size determined by XRD analysis ranges from 12 to 30 nm, depending on the milling time. The activated powders were pressed into disc-shaped samples, 8 mm in diameter and 1.5 mm thick, applying the pressure of 500 MPa,. Thermoelectric measurements conducted in the temperature range from room temperature to 350 Ā°C revealed that the electrical resistivity of the sample depends on temperature and activation time. At room temperature, the maximum value of specific electrical resistivity (Ļ0 = 1 MĪ©m) was observed for the sample obtained by pressing the powder activated for 6 h. Magnetic properties of pressed powder samples were studied using a modified Faraday method. At room temperature, the pressed powder activated for 3 h exhibited the maximum value of magnetization, M0= 0.86 Am2/kg. Multiple heating of the pressed samples, for 10 min, was performed in a magnetic field of 20 KA/m. After cooling, the highest magnetization values were observed for the samples previously heated at 380 Ā°C, while the maximum one (Mā= 1.04 Am2/kg) corresponds to the sample activated for 3 h
Correlation between isothermal expansion and functional properties change of the Fe81B13Si4C2 amorphous alloy
The structural changes effect on functional properties of ribbon shaped samples of the Fe81B13Si4C2 amorphous alloy during annealing process was investigated in this paper. Differential scanning calorimetry method has shown that this alloy crystallizes in one stage, in temperature range from room temperature up to 700Ā°C. Structural relaxation process was investigated by sensitive dilatation method in nonisothermal and isothermal conditions. It has been shown that structural relaxation process occurs in two stages by measuring thermal expansion at constant temperatures of t1=420Ā°C, t2 = 440Ā°C and t3 = 460Ā°C. The first stage is characterized by linear logarithmic dependence of thermal expansion upon time at constant temperature. The second stage of structural relaxation process is characterized by linear dependence of isothermal expansion upon the square root of process time. These results imply that the first stage of structural relaxation process is a rapid kinetic process, while the second stage of structural relaxation process is a slow diffusion process. The rate constants k11 = 2,27ā
10- 3 s-1, k12 = 2,79ā
10-3 s-1, k13 = 3,6ā
10-3 s-1, k21 = 0,67ā
10-4 s-1, k22 = 3,72ā
10-4 s-1, k23 = 21,53ā
10-4 s-1 and activation energies E1 = 48,64 kJ/mol and E2 = 366, 23 kJ/mol were determined for both stages of structural relaxation process. The distinct correlation between structural relaxation process and magnetic susceptibility relative change was determined by thermomagnetic measurements. It has been shown that magnetic susceptibility can be increased by up to 80%, by convenient annealings after structural relaxation process, at magnetic field intensity of 8 kA/m
Microstructure evolution and sintering kinetics of ZnO
The aim of this work was to analyse the kinetics and microstructure evolution of ZnO sintering process. ZnO powder was isothermally sintered (15, 30, 60, 90 and 120 min) in the temperature range from 8000C to 12000C. The values of Lenel parameter were calculated and used for the analysis of the densification and mass transport processes. Using scanning electron microscopy the analysis of the microstructure evolution and dependence of the average grain size with temperature and time of sintering was obtained. The results of this research could enable development of a new phenomenological equations in the analyses of ZnO-based materials sintering kinetics
Influence of mechanical activation on mechanical properties of PVDF-nanoparticle composites
The influence of mechanically activated fillers (ZnO, BaTiO3 and SrTiO3 ultra-fine powders) on mechanical properties of poly(vinylidene) fluoride (PVDF) and oxide nanoparticle composite was investigated using molecular simulations. Mechanical activation leads to the creation of new surfaces and the comminution of the initial powder particles, which affects the crystallization of PVDF matrix. In addition, prolonged mechanical activation leads to agglomeration of nanoparticles into āsoftā and āhardā agglomerates of different sizes. All of this has a significant effect on mechanical properties of PVDF-nanoparticle composites. Microstructural changes due to mechanical activation in ZnO, BaTiO3 and SrTiO3 powders were investigated using SEM and XRD, while dependence of mechanical properties on nanoparticle size was investigated using molecular simulation. These show that smaller nanoparticles significantly enhance the mechanical properties of PVDF-nanoparticle composite and allow use of mechanical activation as a means of reducing the amount of nanoparticle filler in the composite, while achieving the same of superior mechanical properties.Conference poster: [https://hdl.handle.net/21.15107/rcub_dais_861
Influence of mechanical activation on mechanical properties of PVDF-nanoparticle composites
Mechanical activation leads to the creation of new surfaces and decrease in particle size of the initial powder particles, which affects the crystallization of PVDF matrix. In addition, prolonged mechanical activation leads to agglomeration of nanoparticles agglomerates of different sizes.
Microstructural changes due to mechanical activation in ZnO, BaTiO3, SrTiO3 and TiO2 powders were investigated using electron microscopy (TEM and SEM), x-ray diffraction (XRD) and particle size analysis (PSA). These were correlated with molecular simulations of mechanical properties of PVDF-nanocluster composites with different oxide nanocluster sizes (1, 1.5 and 2 nm)
Each system was simulated using a periodic system of metal oxide nanocrystal inside Ī²-PVDF matrix. Ī²-PVDF was chosen for its superior properties over Ī±- and Ī³- phases. Geometry of each system was optimized prior to the calculation of mechanical properties using GULP v4.3 software package.
Molecular simulations show that, in general, mechanical properties (Young modulus as an indication of elasticity, Shear modulus as an indication of hardness) for all systems improve with decrease in nanocluster size. This suggests that mechanical activation of fillers in PVDF-metal oxide nanoparticle composites should have a positive effect on the mechanical properties of composite systems.
This suggests mechanical activation as an easy an inexpensive method of improving mechanical properties of polymer-nanocrystal composite materials.Conference abstract: [https://hdl.handle.net/21.15107/rcub_dais_882
- ā¦