48 research outputs found

    Stochastic multistep polarization switching in ferroelectrics

    Get PDF
    Consecutive stochastic 90° polarization switching events, clearly resolved in recent experiments, are described by a nucleation and growth multistep model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible consecutive 90°- and parallel 180° switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb(Zr,Ti)O3 ceramic in a wide range of electric fields over a time domain of seven orders of magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices

    Experimental approach for investigating polarization and strain switching dynamics in ferroelectric/ferroelastic materials

    Full text link
    An experimental method for simultaneous time-resolved measurements of polarization and strain was developed. The presence of multiple events during polarization switching of multiaxial ferroelectric/ferroelastic materials was revealed and characteristic times and activation fields were determined

    Requirements for the transfer of lead-free piezoceramics into application

    Get PDF
    The recent review for the Restriction of Hazardous Substances Directive (RoHS) by the expert committee, appointed by the European Union, stated that the replacement of PZT “… may be scientifically and technologically practical to a certain degree …”, although replacement “… is scientifically and technically still impractical in the majority of applications.” Thus, two decades of sustained research and development may be approaching fruition, at first limited to a minority of applications. Therefore, it is of paramount importance to assess the viability of lead-free piezoceramics over a broad range of application-relevant properties. These are identified and discussed in turn: 1. Cost, 2. Reproducibility, 3. Mechanical and Thermal Properties, 4. Electrical Conductivity, and 5. Lifetime. It is suggested that the worldwide efforts into the development of lead-free piezoceramics now require a broader perspective to bring the work to the next stage of development by supporting implementation into real devices. Guidelines about pertinent research requirements into a wide range of secondary properties, measurement techniques, and salient literature are provided

    The Fermi energy as common parameter to describe charge compensation mechanisms: A path to Fermi level engineering of oxide electroceramics

    Get PDF
    Chemical substitution, which can be iso- or heterovalent, is the primary strategy to tailor material properties. There are various ways how a material can react to substitution. Isovalent substitution changes the density of states while heterovalent substitution, i.e. doping, can induce electronic compensation, ionic compensation, valence changes of cations or anions, or result in the segregation or neutralization of the dopant. While all these can, in principle, occur simultaneously, it is often desirable to select a certain mechanism in order to determine material properties. Being able to predict and control the individual compensation mechanism should therefore be a key target of materials science. This contribution outlines the perspective that this could be achieved by taking the Fermi energy as a common descriptor for the different compensation mechanisms. This generalization becomes possible since the formation enthalpies of the defects involved in the various compensation mechanisms do all depend on the Fermi energy. In order to control material properties, it is then necessary to adjust the formation enthalpies and charge transition levels of the involved defects. Understanding how these depend on material composition will open up a new path for the design of materials by Fermi level engineering

    Growth of single crystals in the (Na1/2Bi1/2)TiO3-(Sr1-xCax)TiO3 system by solid state crystal growth

    Get PDF
    Ceramics based on (Na1/2B1/2)TiO3 are promising candidates for actuator applications because of large strains generated by an electric field-induced phase transition. For example, the (1-x)(Na1/2Bi1/2)TiO3-xSrTiO(3) system exhibits a morphotropic phase boundary at x = 0.2-0.3, leading to high values of inverse piezoelectric constant d*(33), which can be further improved by the use of single crystals. In our previous work, single crystals of (Na1/2B1/2)TiO3-SrTiO3 and (Na1/2B1/2)TiO3-CaTiO3 were grown by the solid state crystal growth technique. Growth in the (Na1/2B1/2)TiO3-SrTiO3 system was sluggish whereas the (Na1/2B1/2)TiO3-CaTiO3 single crystals grew well. In the present work, 0.8(Na1/2Bi1/2)TiO3-0.2(Sr1-xCax)TiO3 single crystals (with x = 0.0, 0.1, 0.2, 0.3, 0.4) were produced by the solid state crystal growth technique in an attempt to improve crystal growth rate. The dependence of mean matrix grain size, single crystal growth distance, and electrical properties on the Ca concentration was investigated in detail. These investigations indicated that at x = 0.3 the matrix grain growth was suppressed and the driving force for single crystal growth was enhanced. Replacing Sr with Ca increased the shoulder temperature T-s and temperature of maximum relative permittivity T-max, causing a decrease in inverse piezoelectric properties and a change from normal to incipient ferroelectric behavior
    corecore