119 research outputs found

    Diffusion Denoised Smoothing for Certified and Adversarial Robust Out-Of-Distribution Detection

    Full text link
    As the use of machine learning continues to expand, the importance of ensuring its safety cannot be overstated. A key concern in this regard is the ability to identify whether a given sample is from the training distribution, or is an "Out-Of-Distribution" (OOD) sample. In addition, adversaries can manipulate OOD samples in ways that lead a classifier to make a confident prediction. In this study, we present a novel approach for certifying the robustness of OOD detection within a 2\ell_2-norm around the input, regardless of network architecture and without the need for specific components or additional training. Further, we improve current techniques for detecting adversarial attacks on OOD samples, while providing high levels of certified and adversarial robustness on in-distribution samples. The average of all OOD detection metrics on CIFAR10/100 shows an increase of 13%/5%\sim 13 \% / 5\% relative to previous approaches

    How Carefully Designed Open Resource Sharing Can Help and Expand Document Analysis Research

    Get PDF
    ISBN : 9780819484116International audienceMaking datasets available for peer reviewing of published document analysis methods or distributing large commonly used document corpora for benchmarking are extremely useful and sound practices and initiatives. This paper shows that they cover only a very tiny segment of the uses shared and commonly available research data may have. We develop a completely new paradigm for sharing and accessing common data sets, benchmarks and other tools that is based on a very open and free community based contribution model. The model is operational and has been implemented so that it can be tested on a broad scale. The new interactions that will arise from its use may spark innovative ways of conducting document analysis research on the one hand, but create very challenging interactions with other research domains as well

    Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath

    Get PDF
    Measurements from the Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft during 40 orbits about Mercury are used to characterize the plasma depletion layer just exterior to the planet’s dayside magnetopause. A plasma depletion layer forms at Mercury as a result of piled-up magnetic flux that is draped around the magnetosphere. The low average upstream Alfvénic Mach number (MA ~3–5) in the solar wind at Mercury often results in large-scale plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup is observed to occur downstream under both quasi-perpendicular and quasi-parallel shock geometries for all orientations of the interplanetary magnetic field (IMF). Furthermore, little to no plasma depletion is seen during some periods with stable northward IMF. The consistently low value of plasma β, the ratio of plasma pressure to magnetic pressure, at the magnetopause associated with the low average upstream MA is believed to be the cause for the high average reconnection rate at Mercury, reported to be nearly 3 times that observed at Earth. Finally, a characteristic depletion length outward from the subsolar magnetopause of ~300 km is found for Mercury. This value scales among planetary bodies as the average standoff distance of the magnetopause

    Ion kinetic properties in Mercury's pre-midnight plasma sheet

    Get PDF
    With data from the Fast Imaging Plasma Spectrometer sensor on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, we demonstrate that the average distributions for both solar wind and planetary ions in Mercury’s pre-midnight plasma sheet are well-described by hot Maxwell-Boltzmann distributions. Temperatures and densities of the H+ ranges ~1–10 cm3 and ~5–30 MK, respectively, maintain thermal pressures of ~1 nPa. The dominant planetary ion, Na+ abundances with respect to H+ and exhibit mass-proportional ion temperatures, indicative of a reconnection-dominated heating in the magnetosphere. Conversely, planetary ion species are accelerated to similar average energies greater by a factor of ~1.5 than that of H+ acceleration in an electric potential, consistent with the presence of a strong centrifugal acceleration process in Mercury’s magnetosphere

    Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions

    Get PDF
    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has observed the northern magnetospheric cusp of Mercury regularly since the probe was inserted into orbit about the innermost planet in March 2011. Observations from the Fast Imaging Plasma Spectrometer (FIPS) made at altitudes 10 cm−3) that are exceeded only by those observed in the magnetosheath. These high plasma densities are also associated with strong diamagnetic depressions observed by MESSENGER's Magnetometer. Plasma in the cusp may originate from several sources: (1) Direct inflow from the magnetosheath, (2) locally produced planetary photoions and ions sputtered off the surface from solar wind impact and then accelerated upward, and (3) flow of magnetosheath and magnetospheric plasma accelerated from dayside reconnection X-lines. We surveyed 518 cusp passes by MESSENGER, focusing on the spatial distribution, energy spectra, and pitch-angle distributions of protons and Na+-group ions. Of those, we selected 77 cusp passes during which substantial Na+-group ion populations were present for a more detailed analysis. We find that Mercury's cusp is a highly dynamic region, both in spatial extent and plasma composition and energies. From the three-dimensional plasma distributions observed by FIPS, protons with mean energies of 1 keV were found flowing down into the cusp (i.e., source (1) above). The distribution of pitch angles of these protons showed a depletion in the direction away from the surface, indicating that ions within 40° of the magnetic field direction are in the loss cone, lost to the surface rather than being reflected by the magnetic field. In contrast, Na+-group ions show two distinct behaviors depending on their energy. Low-energy (100–300 eV) ions appear to be streaming out of the cusp, showing pitch-angle distributions with a strong component antiparallel to the magnetic field (away from the surface). These ions appear to have been generated in the cusp and accelerated locally (i.e., source (2) above). Higher-energy (≥1 keV) Na+-group ions in the cusp exhibit much larger perpendicular components in their energy distributions. During active times, as judged by frequent, large-amplitude magnetic field fluctuations, many more Na+-group ions are measured at latitudes south of the cusp. In several cases, these Na+-group ions in the dayside magnetosphere are flowing northward toward the cusp. The high mean energy, pitch-angle distributions, and large number of Na+-group ions on dayside magnetospheric field lines are inconsistent with direct transport into the cusp of sputtered ions from the surface or newly photoionized particles. Furthermore, the highest densities and mean energies often occur together with high-amplitude magnetic fluctuations, attributed to flux transfer events along the magnetopause. These results indicate that high-energy Na+-group ions in the cusp are likely formed by ionization of escaping neutral Na in the outer dayside magnetosphere and the magnetosheath followed by acceleration and transport into the cusp by reconnection at the subsolar magnetopause (i.e., source 3 above)

    Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Get PDF
    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind

    Mercury's Magnetopause and Bow Shock from MESSENGER Magnetometer Observations

    Get PDF
    We have established the average shape and location of Mercury's magnetopause and bow shock from orbital observations by the MESSENGER Magnetometer. We fit empirical models to midpoints of boundary crossings and probability density maps of the magnetopause and bow shock positions. The magnetopause was fit by a surface for which the position R from the planetary dipole varies as [1 + cos(theta)]-alpha, where theta is the angle between R and the dipole-Sun line, the subsolar standoff distance Rss is 1.45 RM (where RM is Mercury's radius), and the flaring parameter alpha = 0.5. The average magnetopause shape and location were determined under a mean solar wind ram pressure PRam of 14.3 nPa. The best fit bow shock shape established under an average Alfvén Mach number (MA) of 6.6 is described by a hyperboloid having Rss = 1.96 RM and an eccentricity of 1.02. These boundaries move as PRam and MA vary, but their shapes remain unchanged. The magnetopause Rss varies from 1.55 to 1.35 RM for PRam in the range of 8.8-21.6 nPa. The bow shock Rss varies from 2.29 to 1.89 RM for MA in the range of 4.12-11.8. The boundaries are well approximated by figures of revolution. Additional quantifiable effects of the interplanetary magnetic field are masked by the large dynamic variability of these boundaries. The magnetotail surface is nearly cylindrical, with a radius of ~2.7 RM at a distance of 3 RM downstream of Mercury. By comparison, Earth's magnetotail flaring continues until a downstream distance of ~10 Rss

    Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    Get PDF
    We assess the statistical spatial distribution of plasma in Mercury’s magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury’s offset dipole magnetic field

    Solar Wind Alpha Particles and Heavy Ions in the Inner Heliosphere Observed with MESSENGER

    Get PDF
    The Fast Imaging Plasma Spectrometer (FIPS) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has made the first in situ measurements of solar wind plasma in the inner heliosphere since the Helios 1 and 2 spacecraft in the 1980s. Although the core of the solar wind velocity distribution is obstructed by the spacecraft sunshade, a data analysis technique has been developed that recovers both bulk and thermal speeds to 10% accuracy and provides the first measurements of solar wind heavy ions (mass per charge >2 amu/e) at heliocentric distances within 0.5 AU. Solar wind alpha particles and heavy ions appear to have similar mean flow speeds at values greater than that of the protons by approximately 70% of the Alfvén speed. From an examination of the thermal properties of alpha particles and heavier solar wind ions, we find a ratio of the temperature of alpha particles to that of protons nearly twice that of previously reported Helios observations, though still within the limits of excessive heating of heavy ions observed spectroscopically close to the Sun. Furthermore, examination of typical magnetic power spectra at the orbits of MESSENGER and at 1 AU reveals the lack of a strong signature of local resonant ion heating, implying that a majority of heavy ion heating could occur close to the Sun. These results demonstrate that the solar wind at plus or minus 0.3 AU is a blend of the effects of wave–particle interactions occurring in both the solar corona and the heliosphere

    Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations

    Full text link
    We have analyzed measurements of planetary ions near Mercury made by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) Fast Imaging Plasma Spectrometer (FIPS) over the first three Mercury years of orbital observations (25 March 2011 through 31 December 2011). We determined the composition and spatial distributions of the most abundant species in the regions sampled by the MESSENGER spacecraft during that period. In particular, we here focus on altitude dependence and relative abundances of species in a variety of spatial domains. We used observed density as a proxy for ambient plasma density, because of limitations to the FIPS field of view. We find that the average observed density is 3.9 × 10 –2  cm –3 for He 2+ , 3.4 × 10 –4  cm –3 for He + , 8.0 × 10 –4  cm –3 for O + ‐group ions, and 5.1 × 10 –3  cm –3 for Na + ‐group ions. Na + ‐group ions are particularly enhanced over other planetary ions (He + and O + group) in the northern magnetospheric cusp (by a factor of ~2.0) and in the premidnight sector on the nightside (by a factor of ~1.6). Within 30° of the equator, the average densities of all planetary ions are depressed at the subsolar point relative to the dawn and dusk terminators. The effect is largest for Na + ‐group ions, which are 49% lower in density at the subsolar point than at the terminators. This depression could be an effect of the FIPS energy threshold. The three planetary ion species considered show distinct dependences on altitude and local time. The Na + group has the smallest e ‐folding height at all dayside local times, whereas He + has the largest. At the subsolar point, the e ‐folding height for Na + ‐group ions is 590 km, and that for the O + group and He + is 1100 km. On the nightside and within 750 km of the geographic equator, Na + ‐group ions are enhanced in the premidnight sector. This enhancement is consistent with nonadiabatic motion and may be observational evidence that nonadiabatic effects are important in Mercury's magnetosphere. Key Points Na+-group ions are enhanced in northern cusp and pre‐midnight sector Planetary ion species show distinct dependences on altitude and local time May be first observation of non‐adiabatic effects in Mercury's magnetospherePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98388/1/jgra50016.pd
    corecore