82 research outputs found

    The effect of ambipolar electric fields on the electron heating in capacitive RF plasmas

    Get PDF
    We investigate the electron heating dynamics in electropositive argon and helium capacitively coupled RF discharges driven at 13.56 MHz by Particle in Cell simulations and by an analytical model. The model allows to calculate the electric field outside the electrode sheaths, space and time resolved within the RF period. Electrons are found to be heated by strong ambipolar electric fields outside the sheath during the phase of sheath expansion in addition to classical sheath expansion heating. By tracing individual electrons we also show that ionization is primarily caused by electrons that collide with the expanding sheath edge multiple times during one phase of sheath expansion due to backscattering towards the sheath by collisions. A synergistic combination of these different heating events during one phase of sheath expansion is required to accelerate an electron to energies above the threshold for ionization. The ambipolar electric field outside the sheath is found to be time modulated due to a time modulation of the electron mean energy caused by the presence of sheath expansion heating only during one half of the RF period at a given electrode. This time modulation results in more electron heating than cooling inside the region of high electric field outside the sheath on time average. If an electric field reversal is present during sheath collapse, this time modulation and, thus, the asymmetry between the phases of sheath expansion and collapse will be enhanced. We propose that the ambipolar electron heating should be included in models describing electron heating in capacitive RF plasmas

    Customized ion flux-energy distribution functions in capacitively coupled plasmas by voltage waveform tailoring

    Get PDF
    We propose a method to generate a single peak at a distinct energy in the ion flux-energy distribution function (IDF) at the electrode surfaces in capacitively coupled plasmas. The technique is based on the tailoring of the driving voltage waveform, i.e. adjusting the phases and amplitudes of the applied harmonics, to optimize the accumulation of ions created by charge exchange collisions and their subsequent acceleration by the sheath electric field. The position of the peak (i.e. the ion energy) and the flux of the ions within the peak of the IDF can be controlled in a wide domain by tuning the parameters of the applied RF voltage waveform, allowing optimization of various applications where surface reactions are induced at particular ion energies

    Virtual and accessible reality technologies in the trends of modern enterprise competitiveness

    No full text
    In today's dynamic business environment, any business organization strives to maintain its own competitive advantage in the market. Therefore, each company develops and implements methods that allow not only to maintain a stable position, but also to develop and increase the scale of activities in a particular area. Such methods include various innovative solutions, attraction of highly qualified personnel, improvement of management system, changes in technological processes in production and many other things. Recently, however, so-called virtual reality technologies (VR-technologies) have become increasingly popular among companies. They are becoming increasingly important due to the rapid development of information and communication and digital technologies, which greatly facilitate and diversify the lives of most people and organizations. Virtual reality technology is slowly entering the workplace and is used in many fields such as medicine, construction and design, automotive, military, logistics, architecture and design, education, sports, engineering, design, tourism, and more. The main advantage of such technologies is the possibility of complete immersion into the created reality, additionally acquired ability to feel and analyze both positive aspects and negative consequences of planned actions, as well as to simulate options for future events. Therefore, the use of modern VR technologies by more and more organizations plays an important role in the development of their competitiveness. According to scientists and practitioners, the benefits of using such technologies are, first, to create added value for consumers through a new set of skills and knowledge; second, to give the organization a virtual competitive advantage; third, the achievement by the company of greater flexibility, dynamism and persuasiveness when using virtual reality to demonstrate its product (for example, to disassemble and assemble its own products in order to explain the internal mechanism or something else); fourth, reducing the duration of the production process, which uses VR technology; fifth, reducing costs and increasing profits for the organization by optimizing processes, which will save resources and time, and others. The aim of this publication is to investigate the main theoretical and practical aspects of virtualization of organizations, in particular, the impact of VR-technologies on their competitiveness, to analyze foreign experience in the use of virtual technologies in business and to summarize proposals for competitive advantage based on virtual reality technologies

    Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas

    Get PDF
    In most PIC/MCC simulations of radio frequency capacitively coupled plasmas (CCPs) several simplifications are made: (i) fast neutrals are not traced, (ii) heavy particle induced excitation and ionization are neglected, (iii) secondary electron emission from boundary surfaces due to neutral particle impact is not taken into account, and (iv) the secondary electron emission coefficient is assumed to be constant, i.e. independent of the incident particle energy and the surface conditions. Here we question the validity of these simplifications under conditions typical for plasma processing applications. We study the effects of including fast neutrals and using realistic energy-dependent secondary electron emission coefficients for ions and fast neutrals in simulations of CCPs operated in argon at 13.56 MHz and at neutral gas pressures between 3 Pa and 100 Pa. We find a strong increase of the plasma density and the ion flux to the electrodes under most conditions, if these processes are included realistically in the simulation. The sheath widths are found to be significantly smaller and the simulation is found to diverge at high pressures for high voltage amplitudes in qualitative agreement with experimental findings. By switching individual processes on and off in the simulation we identify their individual effects on the ionization dynamics and plasma parameters. We conclude that fast neutrals and energy-dependent secondary electron emission coefficients must be included in simulations of CCPs in order to yield realistic results

    Kinetic simulation of the sheath dynamics in the intermediate radio-frequency regime

    Full text link
    The dynamics of temporally modulated plasma boundary sheaths is studied in the intermediate radio frequency regime where the applied radio frequency and the ion plasma frequency are comparable. Two kinetic simulation codes are employed and their results are compared. The first code is a realization of the well-known scheme, Particle-In-Cell with Monte Carlo collisions (PIC/MCC) and simulates the entire discharge, a planar radio frequency capacitively coupled plasma (RF-CCP) with an additional heating source. The second code is based on the recently published scheme Ensemble-in-Spacetime (EST); it resolves only the sheath and requires the time resolved voltage across and the ion flux into the sheath as input. Ion inertia causes a temporal asymmetry (hysteresis) of the sheath charge-voltage relation; also other ion transit time effects are found. The two codes are in good agreement, both with respect to the spatial and temporal dynamics of the sheath and with respect to the ion energy distributions at the electrodes. It is concluded that the EST scheme may serve as an efficient post-processor for fluid or global simulations and for measurements: It can rapidly and accurately calculate ion distribution functions even when no genuine kinetic information is available

    A scanning drift tube apparatus for spatio-temporal mapping of electron swarms

    Get PDF
    A "scanning" drift tube apparatus, capable of mapping of the spatio-temporal evolution of electron swarms, developing between two plane electrodes under the effect of a homogeneous electric field, is presented. The electron swarms are initiated by photoelectron pulses and the temporal distributions of the electron flux are recorded while the electrode gap length (at a fixed electric field strength) is varied. Operation of the system is tested and verified with argon gas, the measured data are used for the evaluation of the electron bulk drift velocity. The experimental results for the space-time maps of the electron swarms - presented here for the first time - also allow clear observation of deviations from hydrodynamic transport. The swarm maps are also reproduced by particle simulations

    Kinetic Interpretation of Resonance Phenomena in Low Pressure Capacitively Coupled Radio Frequency Plasmas

    Get PDF
    The kinetic origin of resonance phenomena in capacitively coupled radio frequency plasmas is discovered based on particle-based numerical simulations. The analysis of the spatio-temporal distributions of plasma parameters such as the densities of hot and cold electrons, as well as the conduction and displacement currents reveals the mechanism of the formation of multiple electron beams during sheath expansion. The interplay between highly energetic beam electrons and low energetic bulk electrons is identified as the physical origin of the excitation of harmonics in the current
    corecore