349 research outputs found

    Job stress in relation to heart rate variability

    Get PDF

    Starvation Induced Cell Death in Autophagy-Defective Yeast Mutants Is Caused by Mitochondria Dysfunction

    Get PDF
    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants

    Phage Lambda CIII: A Protease Inhibitor Regulating the Lysis-Lysogeny Decision

    Get PDF
    The ATP-dependent protease FtsH (HflB) complexed with HflKC participates in post-translational control of the lysis-lysogeny decision of bacteriophage lambda by rapid degradation of lambda CII. Both phage-encoded proteins, the CII transcription activator and the CIII polypeptide, are required for efficient lysogenic response. The conserved CIII is both an inhibitor and substrate of FtsH. Here we show that the protease inhibitor CIII is present as oligomeric amphipathic α helical structures and functions as a competitive inhibitor of FtsH by preventing binding of the CII substrate. We identified single alanine substitutions in CIII that abolish its activity. We characterize a dominant negative effect of a CIII mutant. Thus, we suggest that CIII oligomrization is required for its function. Real-time analysis of CII activity demonstrates that the effect of CIII is not seen in the absence of either FtsH or HflKC. When CIII is provided ectopically, CII activity increases linearly as a function of the multiplicity of infection, suggesting that CIII enhances CII stability and the lysogenic response. FtsH function is essential for cellular viability as it regulates the balance in the synthesis of phospholipids and lipopolysaccharides. Genetic experiments confirmed that the CIII bacteriostatic effects are due to inhibition of FtsH. Thus, the early presence of CIII following infection stimulates the lysogenic response, while its degradation at later times ensures the reactivation of FtsH allowing the growth of the established lysogenic cell

    Phospholipase A2-activating protein is associated with a novel form of leukoencephalopathy

    Get PDF
    Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A2-activating protein encoding gene (PLAA). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E2 and cytosolic phospholipase A2 activity in membrane fractions of fibroblasts derived from patients and healthy controls. Plaa-null mice were generated and prostaglandin E2 levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein's ability to induce prostaglandin E2 and cytosolic phospholipase A2 synthesis in patients' fibroblasts. Plaa-null mice were perinatal lethal with reduced brain levels of prostaglandin E2 The non-functional phospholipase A2-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance

    Ankle brachial index combined with Framingham risk score to predict cardiovascular events and mortality - A meta-analysis

    Get PDF
    CONTEXT: Prediction models to identify healthy individuals at high risk of cardiovascular disease have limited accuracy. A low ankle brachial index (ABI) is an indicator of atherosclerosis and has the potential to improve prediction. OBJECTIVE: To determine if the ABI provides information on the risk of cardiovascular events and mortality independently of the Framingham risk score (FRS) and can improve risk prediction. DATA SOURCES: Relevant studies were identified. A search of MEDLINE (1950 to February 2008) and EMBASE (1980 to February 2008) was conducted using common text words for the term ankle brachial index combined with text words and Medical Subject Headings to capture prospective cohort designs. Review of reference lists and conference proceedings, and correspondence with experts was conducted to identify additional published and unpublished studies. STUDY SELECTION: Studies were included if participants were derived from a general population, ABI was measured at baseline, and individuals were followed up to detect total and cardiovascular mortality. DATA EXTRACTION: Prespecified data on individuals in each selected study were extracted into a combined data set and an individual participant data meta-analysis was conducted on individuals who had no previous history of coronary heart disease. RESULTS: Sixteen population cohort studies fulfilling the inclusion criteria were included. During 480,325 person-years of follow-up of 24,955 men and 23,339 women, the risk of death by ABI had a reverse J-shaped distribution with a normal (low risk) ABI of 1.11 to 1.40. The 10-year cardiovascular mortality in men with a low ABI (< or = 0.90) was 18.7% (95% confidence interval [CI], 13.3%-24.1%) and with normal ABI (1.11-1.40) was 4.4% (95% CI, 3.2%-5.7%) (hazard ratio [HR], 4.2; 95% CI, 3.3-5.4). Corresponding mortalities in women were 12.6% (95% CI, 6.2%-19.0%) and 4.1% (95% CI, 2.2%-6.1%) (HR, 3.5; 95% CI, 2.4-5.1). The HRs remained elevated after adjusting for FRS (2.9 [95% CI, 2.3-3.7] for men vs 3.0 [95% CI, 2.0-4.4] for women). A low ABI (< or = 0.90) was associated with approximately twice the 10-year total mortality, cardiovascular mortality, and major coronary event rate compared with the overall rate in each FRS category. Inclusion of the ABI in cardiovascular risk stratification using the FRS would result in reclassification of the risk category and modification of treatment recommendations in approximately 19% of men and 36% of women. CONCLUSION: Measurement of the ABI may improve the accuracy of cardiovascular risk prediction beyond the FRS

    The YARHG Domain: An Extracellular Domain in Search of a Function

    Get PDF
    We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times

    Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor

    Get PDF
    The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the ‘chymotrypsin-like’ enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia

    The Cytosolic Tail of the Golgi Apyrase Ynd1 Mediates E4orf4-Induced Toxicity in Saccharomyces cerevisiae

    Get PDF
    The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death
    • …
    corecore