23 research outputs found

    Optimal estimation of diffusion in DW-MRI by high-order MRF-based joint deformable registration and diffusion modeling

    Get PDF
    International audienceOver the last years, the apparent diffusion coefficient (ADC), computed from diffusion-weighted magnetic resonance (DW-MR) images, has become an important imaging biomarker for evaluating and managing patients with neoplastic or cerebrovascular disease. Standard methods for the calculation of ADC ignore the presence of noise and motion between successive (in time) DW-MR images acquired by changing the b-value. In order to accurately quantify the diffusion process during image acquisition, we introduce a method based on a high-order Markov Random Field (MRF) formulation that jointly registers the DW-MR images and models the spatiotemporal diffusion. Spatial smoothness on the ADC map, as well as spatiotempo-ral deformation smoothness, is imposed towards producing anatomically meaningful representations. The high-order dependencies in our MRF model are handled through Dual Decomposition. Performance of registration is compared to a state-of-the art registration approach in terms of obtained fitting error of the diffusion model in the core of the tumor. Preliminary results reveal a marginally better performance of our method when compared against the standard ADC map used in clinical practice, which indicates its potential as a means for extracting imaging biomarkers

    Deformable group-wise registration using a physiological model: application to DIffusion-Weighted MRI

    Get PDF
    International audienceIntensity variations can often be described by a physiological or temporal model applied on a voxel-wise basis across a group of images. However the voxel correspondence might be unknown, imposing the need for a group-wise deformable registration coupled with the computation of the model parameters. In this paper we propose a group-wise registration method of medical images that incorporates the temporal dimension (reflecting the change of signal amplitude) of the acquisition process. Consistency on the spatiotemporal physiological model, as well as deformation smoothness, is imposed in order to produce anatomically meaningful representations of the 3D images. The performance of the proposed method is compared to two different group-wise registration approaches; one that penalizes the absolute differences in the intensities and one that penalizes the intensity range among the images on corresponding regions. We chose as an application paradigm the registration of diffusion-weighted magnetic resonance (DW-MR) images for the evaluation of patients with lymphomas. A dataset consisting of 25 patients, each scanned with 3 " b values " , was used to evaluate the method's accuracy. The proposed registration method outperfomed the other two registration approaches, making it a very promising method for highlighting the importance of DWI as an imaging biomarker

    Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: a CENTER-TBI study

    Get PDF
    Background:聽We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI. Methods:聽Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering. Findings:聽2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0路48-0路49; p<0路05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0路44-0路44; p<0路01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83路9% of variance, with phenotyping characteristics related to clinical injury severity. Interpretation:聽Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury

    Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: A CENTER-TBI study.

    Get PDF
    BACKGROUND: We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI. METHODS: Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering. FINDINGS: 2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0路48-0路49; p<0路05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0路44-0路44; p<0路01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83路9% of variance, with phenotyping characteristics related to clinical injury severity. INTERPRETATION: Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury. FUNDING: CENTER-TBI is funded by the European Union 7th Framework programme (EC grant 602150)

    Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: A CENTER-TBI study.

    Get PDF
    BACKGROUND: We aimed to understand the relationship between serum biomarker concentration and lesion type and volume found on computed tomography (CT) following all severities of TBI. METHODS: Concentrations of six serum biomarkers (GFAP, NFL, NSE, S100B, t-tau and UCH-L1) were measured in samples obtained <24 hours post-injury from 2869 patients with all severities of TBI, enrolled in the CENTER-TBI prospective cohort study (NCT02210221). Imaging phenotypes were defined as intraparenchymal haemorrhage (IPH), oedema, subdural haematoma (SDH), extradural haematoma (EDH), traumatic subarachnoid haemorrhage (tSAH), diffuse axonal injury (DAI), and intraventricular haemorrhage (IVH). Multivariable polynomial regression was performed to examine the association between biomarker levels and both distinct lesion types and lesion volumes. Hierarchical clustering was used to explore imaging phenotypes; and principal component analysis and k-means clustering of acute biomarker concentrations to explore patterns of biomarker clustering. FINDINGS: 2869 patient were included, 68% (n=1946) male with a median age of 49 years (range 2-96). All severities of TBI (mild, moderate and severe) were included for analysis with majority (n=1946, 68%) having a mild injury (GCS 13-15). Patients with severe diffuse injury (Marshall III/IV) showed significantly higher levels of all measured biomarkers, with the exception of NFL, than patients with focal mass lesions (Marshall grades V/VI). Patients with either DAI+IVH or SDH+IPH+tSAH, had significantly higher biomarker concentrations than patients with EDH. Higher biomarker concentrations were associated with greater volume of IPH (GFAP, S100B, t-tau;adj r2 range:0路48-0路49; p<0路05), oedema (GFAP, NFL, NSE, t-tau, UCH-L1;adj r2 range:0路44-0路44; p<0路01), IVH (S100B;adj r2 range:0.48-0.49; p<0.05), Unsupervised k-means biomarker clustering revealed two clusters explaining 83路9% of variance, with phenotyping characteristics related to clinical injury severity. INTERPRETATION: Interpretation: Biomarker concentration within 24 hours of TBI is primarily related to severity of injury and intracranial disease burden, rather than pathoanatomical type of injury. FUNDING: CENTER-TBI is funded by the European Union 7th Framework programme (EC grant 602150)

    Serum biomarkers identify critically ill traumatic brain injury patients for MRI

    Get PDF

    Joint Deformable Image Registration and ADC Map Regularization : Application to DWI-Based Lymphoma Classification

    No full text
    The Apparent Diffusion Coefficient (ADC) is considered an importantimaging biomarker contributing to the assessment of tissue microstructure and pathophy- siology. It is calculated from Diffusion-Weighted Magnetic Resonance Imaging (DWI) by means of a diffusion model, usually without considering any motion during image acquisition. We propose a method to improve the computation of the ADC by coping jointly with both motion artifacts in whole-body DWI (through group-wise registration) and possible instrumental noise in the diffusion model. The proposed deformable registration method yielded on average the lowest ADC reconstruction error on data with simulated motion and diffusion. Moreover, our approach was applied on whole-body diffusion weighted images obtained with five different b-values from a cohort of 38 patients with histologically confirmed lymphomas of three different types (Hodgkin, diffuse large B-cell lymphoma and follicular lymphoma). Evaluation on the real data showed that ADC-based features, extracted using our joint optimization approach classified lymphomas with an accuracy of approximately 78.6% (yielding a 11% increase in respect to the standard features extracted from unregistered diffusion-weighted images). Furthermore, the correlation between diffusion characteristics and histopathological findings was higher than any other previous approach of ADC computation

    Sensitivity of Diffusion MRI to White Matter Pathology: Influence of Diffusion Protocol, Magnetic Field Strength, and Processing Pipeline in Systemic Lupus Erythematosus.

    No full text
    There are many ways to acquire and process diffusion MRI (dMRI) data for group studies, but it is unknown which maximizes the sensitivity to white matter (WM) pathology. Inspired by this question, we analyzed data acquired for diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) at 3T (3T-DTI and 3T-DKI) and DTI at 7T in patients with systemic lupus erythematosus (SLE) and healthy controls (HC). Parameter estimates in 72 WM tracts were obtained using TractSeg. The impact on the sensitivity to WM pathology was evaluated for the diffusion protocol, the magnetic field strength, and the processing pipeline. Sensitivity was quantified in terms of Cohen's d for group comparison. Results showed that the choice of diffusion protocol had the largest impact on the effect size. The effect size in fractional anisotropy (FA) across all WM tracts was 0.26 higher when derived by DTI than by DKI and 0.20 higher in 3T compared with 7T. The difference due to the diffusion protocol was larger than the difference due to magnetic field strength for the majority of diffusion parameters. In contrast, the difference between including or excluding different processing steps was near negligible, except for the correction of distortions from eddy currents and motion which had a clearly positive impact. For example, effect sizes increased on average by 0.07 by including motion and eddy correction for FA derived from 3T-DTI. Effect sizes were slightly reduced by the incorporation of denoising and Gibbs-ringing removal (on average by 0.011 and 0.005, respectively). Smoothing prior to diffusion model fitting generally reduced effect sizes. In summary, 3T-DTI in combination with eddy current and motion correction yielded the highest sensitivity to WM pathology in patients with SLE. However, our results also indicated that the 3T-DKI and 7T-DTI protocols used here may be adjusted to increase effect sizes
    corecore