44 research outputs found

    Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics

    Full text link
    We investigate the non-equilibrium dynamics of the transverse field quantum Ising chain evolving from an inhomogeneous initial state given by joining two macroscopically different semi-infinite chains. We obtain integral expressions for all two-point correlation functions of the Jordan-Wigner Majorana fermions at any time and for any value of the transverse field. Using this result, we compute analytically the profiles of various physical observables in the space-time scaling limit and show that they can be obtained from a hydrodynamic picture based on ballistically propagating quasiparticles. Going beyond the hydrodynamic limit, we analyze the approach to the non-equilibrium steady state and find that the leading late time corrections display a lattice effect. We also study the fine structure of the propagating fronts which are found to be described by the Airy kernel and its derivatives. Near the front we observe the phenomenon of energy back-flow where the energy locally flows from the colder to the hotter region

    Transport in the sine-Gordon field theory: from generalized hydrodynamics to semiclassics

    Get PDF
    The semiclassical approach introduced by Sachdev and collaborators proved to be extremely successful in the study of quantum quenches in massive field theories, both in homogeneous and inhomogeneous settings. While conceptually very simple, this method allows one to obtain analytic predictions for several observables when the density of excitations produced by the quench is small. At the same time, a novel generalized hydrodynamic (GHD) approach, which captures exactly many asymptotic features of the integrable dynamics, has recently been introduced. Interestingly, also this theory has a natural interpretation in terms of semiclassical particles and it is then natural to compare the two approaches. This is the objective of this work: we carry out a systematic comparison between the two methods in the prototypical example of the sine-Gordon field theory. In particular, we study the "bipartitioning protocol" where the two halves of a system initially prepared at different temperatures are joined together and then left to evolve unitarily with the same Hamiltonian. We identify two different limits in which the semiclassical predictions are analytically recovered from GHD: a particular non-relativistic limit and the low temperature regime. Interestingly, the transport of topological charge becomes sub-ballistic in these cases. Away from these limits we find that the semiclassical predictions are only approximate and, in contrast to the latter, the transport is always ballistic. This statement seems to hold true even for the so-called "hybrid" semiclassical approach, where finite time DMRG simulations are used to describe the evolution in the internal space.Comment: 30 pages, 6 figure

    Temperature driven quenches in the Ising model: appearance of negative Rényi mutual information

    Get PDF
    We study the dynamics of the transverse field Ising chain after a local quench in which two independently thermalised chains are joined together and are left to evolve unitarily. In the emerging non-equilibrium steady state the Rényi mutual information with different indices are calculated between two adjacent segments of the chain, and are found to scale logarithmically in the subsystem size. Surprisingly, for Rényi indices > 2 we find cases where the prefactor of the logarithmic dependence is negative. The fact that the naively defined Rényi mutual information might be negative has been pointed out before, however, we provide the first example for this scenario in a realistic many-body setup. Our numerical and analytical results indicate that in this setup it can be negative for any index > 2 while it is always positive for < 2. Interestingly, even for > 2 the calculated prefactors show some universal features: for example, the same prefactor is also shown to govern the logarithmic time dependence of the Rényi mutual information before the system relaxes locally to the steady state. In particular, it can decrease in the non-equilibrium evolution after the quench

    Kibble-Zurek mechanism in the Ising Field Theory

    Get PDF
    The Kibble-Zurek mechanism captures universality when a system is driven through a continuous phase transition. Here we study the dynamical aspect of quantum phase transitions in the Ising Field Theory where the quantum critical point can be crossed in different directions in the two-dimensional coupling space leading to different scaling laws. Using the Truncated Conformal Space Approach, we investigate the microscopic details of the Kibble-Zurek mechanism in terms of instantaneous eigenstates in a genuinely interacting field theory. For different protocols, we demonstrate dynamical scaling in the non-adiabatic time window and provide analytic and numerical evidence for specific scaling properties of various quantities. In particular, we argue that the higher cumulants of the excess heat exhibit universal scaling in generic interacting models for a slow enough ramp

    Theory of quantum work in metallic grains

    Get PDF
    We generalize Anderson's orthogonality determinant formula to describe the statistics of work performed on generic disordered, noninteracting fermionic nanograins during quantum quenches. The energy absorbed increases linearly with time, while its variance exhibits a superdiffusive behavior due to Pauli's exclusion principle. The probability of adiabatic evolution decays as a stretched exponential. In slowly driven systems, work statistics exhibit universal features and can be understood in terms of fermion diffusion in energy space, generated by Landau-Zener transitions. This diffusion is very well captured by a Markovian symmetrical exclusion process, with the diffusion constant identified as the energy absorption rate. The energy absorption rate shows an anomalous frequency dependence at small energies, reflecting the symmetry class of the underlying Hamiltonian. Our predictions can be experimentally verified by calorimetric measurements performed on nanoscale circuits
    corecore