109 research outputs found

    Current status and recommendations for biomarkers and biobanking in neurofibromatosis

    Get PDF
    Objective: Clinically validated biomarkers for neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and schwannomatosis (SWN) have not been identified to date. The biomarker working group's goals are to (1) define biomarker needs in NF1, NF2, and SWN; (2) summarize existing data on biomarkers in NF1, NF2, and SWN; (3) outline recommendations for sample collection and biomarker development; and (4) standardize sample collection and methodology protocols where possible to promote comparison between studies by publishing standard operating procedures (SOPs). Methods: The biomarker group reviewed published data on biomarkers in NF1, NF2, and SWN and on biobanking efforts outside these diseases via literature search, defined the need for biomarkers in NF, and developed recommendations in a series of consensus meetings. Results: We describe existing biomarkers in NF and report consensus recommendations for SOP and a minimal clinical dataset to accompany samples derived from patients with NF1, NF2, and SWN in decentralized biobanks. Conclusions: These recommendations are intended to provide clinicians and researchers with a common set of guidelines to collect and store biospecimens and for establishment of biobanks for NF1, NF2, and SWN.N

    Increased risk of malignancies in a population-based study of 818 soft-tissue sarcoma patients

    Get PDF
    Soft-tissue sarcomas (STS) have been associated with various rare cancer syndromes and occur at increased frequencies in survivors of childhood cancer. Also adult patients with STS have been suggested to be at an increased risk of additional malignancies. After exclusion of syndrome-associated and radiation-induced sarcomas, we studied multiple primary malignancies in a population-based cohort of 818 patients with primary STS of the extremities and the trunk wall. In total, 203 other malignancies developed in 164 (20%) patients median 10 (0–32) years before and median 4 (0–35) years after the sarcoma diagnosis. Standardised morbidity ratios (SMRs) were determined for primary malignancies following a STS. Hereby individuals who had developed a STS were identified to be at increased risk of second primary malignancies (SMR for all malignant tumours=1.3; 95% CI=1.0–1.5; P=0.02) with STS being the only specific tumour type that occurred at an increased risk (SMR=17.6; 95% CI=8.1–33.5; P<0.001). Hence, this population-based series demonstrates a high frequency of second primary tumours among STS patients and indicates a particularly increased risk of developing a new STS

    TMPRSS2-ERG -specific transcriptional modulation is associated with prostate cancer biomarkers and TGF-β signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>TMPRSS2-ERG </it>gene fusions occur in about 50% of all prostate cancer cases and represent promising markers for molecular subtyping. Although <it>TMPRSS2-ERG </it>fusion seems to be a critical event in prostate cancer, the precise functional role in cancer development and progression is still unclear.</p> <p>Methods</p> <p>We studied large-scale gene expression profiles in 47 prostate tumor tissue samples and in 48 normal prostate tissue samples taken from the non-suspect area of clinical low-risk tumors using Affymetrix GeneChip Exon 1.0 ST microarrays.</p> <p>Results</p> <p>Comparison of gene expression levels among <it>TMPRSS2-ERG </it>fusion-positive and negative tumors as well as benign samples demonstrated a distinct transcriptional program induced by the gene fusion event. Well-known biomarkers for prostate cancer detection like <it>CRISP3 </it>were found to be associated with the gene fusion status. WNT and TGF-β/BMP signaling pathways were significantly associated with genes upregulated in <it>TMPRSS2-ERG </it>fusion-positive tumors.</p> <p>Conclusions</p> <p>The <it>TMPRSS2-ERG </it>gene fusion results in the modulation of transcriptional patterns and cellular pathways with potential consequences for prostate cancer progression. Well-known biomarkers for prostate cancer detection were found to be associated with the gene fusion. Our results suggest that the fusion status should be considered in retrospective and future studies to assess biomarkers for prostate cancer detection, progression and targeted therapy.</p

    The C. elegans H3K27 Demethylase UTX-1 Is Essential for Normal Development, Independent of Its Enzymatic Activity

    Get PDF
    Epigenetic modifications influence gene expression and provide a unique mechanism for fine-tuning cellular differentiation and development in multicellular organisms. Here we report on the biological functions of UTX-1, the Caenorhabditis elegans homologue of mammalian UTX, a histone demethylase specific for H3K27me2/3. We demonstrate that utx-1 is an essential gene that is required for correct embryonic and postembryonic development. Consistent with its homology to UTX, UTX-1 regulates global levels of H3K27me2/3 in C. elegans. Surprisingly, we found that the catalytic activity is not required for the developmental function of this protein. Biochemical analysis identified UTX-1 as a component of a complex that includes SET-16(MLL), and genetic analysis indicates that the defects associated with loss of UTX-1 are likely mediated by compromised SET-16/UTX-1 complex activity. Taken together, these results demonstrate that UTX-1 is required for many aspects of nematode development; but, unexpectedly, this function is independent of its enzymatic activity

    CodingQuarry: Highly accurate hidden Markov model gene prediction in fungal genomes using RNA-seq transcripts

    Get PDF
    Background: The impact of gene annotation quality on functional and comparative genomics makes gene prediction an important process, particularly in non-model species, including many fungi. Sets of homologous protein sequences are rarely complete with respect to the fungal species of interest and are often small or unreliable, especially when closely related species have not been sequenced or annotated in detail. In these cases, protein homology-based evidence fails to correctly annotate many genes, or significantly improve ab initio predictions. Generalised hidden Markov models (GHMM) have proven to be invaluable tools in gene annotation and, recently, RNA-seq has emerged as a cost-effective means to significantly improve the quality of automated gene annotation. As these methods do not require sets of homologous proteins, improving gene prediction from these resources is of benefit to fungal researchers. While many pipelines now incorporate RNA-seq data in training GHMMs, there has been relatively little investigation into additionally combining RNA-seq data at the point of prediction, and room for improvement in this area motivates this study. Results: CodingQuarry is a highly accurate, self-training GHMM fungal gene predictor designed to work with assembled, aligned RNA-seq transcripts. RNA-seq data informs annotations both during gene-model training and in prediction. Our approach capitalises on the high quality of fungal transcript assemblies by incorporating predictions made directly from transcript sequences. Correct predictions are made despite transcript assembly problems, including those caused by overlap between the transcripts of adjacent gene loci. Stringent benchmarking against high-confidence annotation subsets showed CodingQuarry predicted 91.3% of Schizosaccharomyces pombe genes and 90.4% of Saccharomyces cerevisiae genes perfectly. These results are 4-5% better than those of AUGUSTUS, the next best performing RNA-seq driven gene predictor tested. Comparisons against whole genome Sc. pombe and S. cerevisiae annotations further substantiate a 4-5% improvement in the number of correctly predicted genes. Conclusions: We demonstrate the success of a novel method of incorporating RNA-seq data into GHMM fungal gene prediction. This shows that a high quality annotation can be achieved without relying on protein homology or a training set of genes. CodingQuarry is freely available (https://sourceforge.net/projects/codingquarry/), and suitable for incorporation into genome annotation pipelines

    University-level practical activities in bioinformatics benefit voluntary groups of pupils in the last 2 years of school

    Get PDF
    This work was supported in part by the Science and Technology Facilities Council under grant ST/M000435/1 to Daniel Barker.Background Bioinformatics—the use of computers in biology—is of major and increasing importance to biological sciences and medicine. We conducted a preliminary investigation of the value of bringing practical, university-level bioinformatics education to the school level. We conducted voluntary activities for pupils at two schools in Scotland (years S5 and S6; pupils aged 15–17). We used material originally developed for an optional final-year undergraduate module and now incorporated into 4273π, a resource for teaching and learning bioinformatics on the low-cost Raspberry Pi computer. Results Pupils’ feedback forms suggested our activities were beneficial. During the course of the activity, they provide strong evidence of increase in the following: pupils’ perception of the value of computers within biology; their knowledge of the Linux operating system and the Raspberry Pi; their willingness to use computers rather than phones or tablets; their ability to program a computer and their ability to analyse DNA sequences with a computer. We found no strong evidence of negative effects. Conclusions Our preliminary study supports the feasibility of bringing university-level, practical bioinformatics activities to school pupils.Publisher PDFPeer reviewe

    Using BUSCO to Assess Insect Genomic Resources

    Get PDF
    The increasing affordability of sequencing technologies offers many new and exciting opportunities to address a diverse array of biological questions. This is evidenced in entomological research by numerous genomics and transcriptomics studies that attempt to decipher the often complex relationships amongst different species or orders and to build ‘omics’ resources to drive advancement of the molecular understanding of insect biology. Being able to gauge the quality of the sequencing data is of critical importance to understanding the potential limitations on the types of questions that these data can be reliably used to address. This chapter details the use of the Benchmarking Universal Single-Copy Orthologue (BUSCO) assessment tool to estimate the completeness of transcriptomes, genome assemblies, and annotated gene sets in terms of their expected gene content

    Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum

    Get PDF
    Background: Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. Results: We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. Conclusions: This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content
    corecore