110 research outputs found

    Nursing Care of Patients With Cirrhosis: The LiverHope Nursing Project

    Get PDF
    Cirrhosis is a complex disease that is associated with disturbances in different organs besides the liver, including kidneys, heart, arterial circulation, lungs, gut, and brain. As a consequence, patients develop a number of complications that result in frequent hospital admissions and high morbidity and mortality. Patients with cirrhosis require constant and rigorous monitoring both in and outside the hospital. In this context, the role of nurses in the care of patients with cirrhosis has not been sufficiently emphasized and there is very limited information about nursing care of patients with cirrhosis compared with other chronic diseases. The current article provides a review of nursing care for the different complications of patients with cirrhosis. Nurses with specific knowledge on liver diseases should be incorporated into multidisciplinary teams managing patients with cirrhosis, both inpatient and outpatient. Conclusion: Nurses play an important role in the management and prevention of complications of the disease and improvement in patients’ quality of life and bridge the gap between clinicians and families, between primary care and hospital care, and provide medical education to patients and caregivers

    Rb regulates fate choice and lineage commitment in vivo

    Get PDF
    February 1, 2011Mutation of the retinoblastoma gene (RB1) tumour suppressor occurs in one-third of all human tumours and is particularly associated with retinoblastoma and osteosarcoma[superscript 1]. Numerous functions have been ascribed to the product of the human RB1 gene, the retinoblastoma protein (pRb). The best known is pRb’s ability to promote cell-cycle exit through inhibition of the E2F transcription factors and the transcriptional repression of genes encoding cell-cycle regulators[superscript 1]. In addition, pRb has been shown in vitro to regulate several transcription factors that are master differentiation inducers[superscript 2]. Depending on the differentiation factor and cellular context, pRb can either suppress or promote their transcriptional activity. For example, pRb binds to Runx2 and potentiates its ability to promote osteogenic differentiation in vitro[superscript 3]. In contrast, pRb acts with E2F to suppress peroxisome proliferator-activated receptor γ subunit (PPAR-γ), the master activator of adipogenesis[superscript 4, 5]. Because osteoblasts and adipocytes can both arise from mesenchymal stem cells, these observations suggest that pRb might play a role in the choice between these two fates. However, so far, there is no evidence for this in vivo. Here we use mouse models to address this hypothesis in mesenchymal tissue development and tumorigenesis. Our data show that Rb status plays a key role in establishing fate choice between bone and brown adipose tissue in vivo.National Cancer Institute (U.S.) (Grant)National Institutes of Health (U.S.) (Grant

    Endpoints and design of clinical trials in patients with decompensated cirrhosis: Position paper of the LiverHope Consortium

    Get PDF
    Management of decompensated cirrhosis is currently geared towards the treatment of complications once they occur. To date there is no established disease-modifying therapy aimed at halting progression of the disease and preventing the development of complications that can be used for patients with decompensated cirrhosis. The design of clinical trials to investigate new therapies for patients with decompensated cirrhosis is complex. The population of patients with decompensated cirrhosis is heterogeneous (i.e., different etiologies, comorbidities, severity of the disease), leading to the inclusion of diverse populations in clinical trials. In addition, primary endpoints selected for trials that include patients with decompensated cirrhosis are not homogeneous and at times may not be appropriate endpoints. This leads to difficulties in comparing of results obtained from different trials. Against this background, the LiverHope Consortium organized a meeting of experts with the goal of making recommendations for the design of clinical trials and defining appropriate endpoints both for trials aimed at modifying the natural history and preventing progression of decompensated cirrhosis and trials aimed at investigating new therapies for the management of each complication of cirrhosis

    LINT, a Novel dL(3)mbt-Containing Complex, Represses Malignant Brain Tumour Signature Genes

    Get PDF
    Mutations in the l(3)mbt tumour suppressor result in overproliferation of Drosophila larval brains. Recently, the derepression of different gene classes in l(3)mbt mutants was shown to be causal for transformation. However, the molecular mechanisms of dL(3)mbt-mediated gene repression are not understood. Here, we identify LINT, the major dL(3)mbt complex of Drosophila. LINT has three core subunits—dL(3)mbt, dCoREST, and dLint-1—and is expressed in cell lines, embryos, and larval brain. Using genome-wide ChIP–Seq analysis, we show that dLint-1 binds close to the TSS of tumour-relevant target genes. Depletion of the LINT core subunits results in derepression of these genes. By contrast, histone deacetylase, histone methylase, and histone demethylase activities are not required to maintain repression. Our results support a direct role of LINT in the repression of brain tumour-relevant target genes by restricting promoter access

    Dosage-Sensitive Function of RETINOBLASTOMA RELATED and Convergent Epigenetic Control Are Required during the Arabidopsis Life Cycle

    Get PDF
    The plant life cycle alternates between two distinct multi-cellular generations, the reduced gametophytes and the dominant sporophyte. Little is known about how generation-specific cell fate, differentiation, and development are controlled by the core regulators of the cell cycle. In Arabidopsis, RETINOBLASTOMA RELATED (RBR), an evolutionarily ancient cell cycle regulator, controls cell proliferation, differentiation, and regulation of a subset of Polycomb Repressive Complex 2 (PRC2) genes and METHYLTRANSFERASE 1 (MET1) in the male and female gametophytes, as well as cell fate establishment in the male gametophyte. Here we demonstrate that RBR is also essential for cell fate determination in the female gametophyte, as revealed by loss of cell-specific marker expression in all the gametophytic cells that lack RBR. Maintenance of genome integrity also requires RBR, because diploid plants heterozygous for rbr (rbr/RBR) produce an abnormal portion of triploid offspring, likely due to gametic genome duplication. While the sporophyte of the diploid mutant plants phenocopied wild type due to the haplosufficiency of RBR, genetic analysis of tetraploid plants triplex for rbr (rbr/rbr/rbr/RBR) revealed that RBR has a dosage-dependent pleiotropic effect on sporophytic development, trichome differentiation, and regulation of PRC2 subunit genes CURLY LEAF (CLF) and VERNALIZATION 2 (VRN2), and MET1 in leaves. There were, however, no obvious cell cycle and cell proliferation defects in these plant tissues, suggesting that a single functional RBR copy in tetraploids is capable of maintaining normal cell division but is not sufficient for distinct differentiation and developmental processes. Conversely, in leaves of mutants in sporophytic PRC2 subunits, trichome differentiation was also affected and expression of RBR and MET1 was reduced, providing evidence for a RBR-PRC2-MET1 regulatory feedback loop involved in sporophyte development. Together, dosage-sensitive RBR function and its genetic interaction with PRC2 genes and MET1 must have been recruited during plant evolution to control distinct generation-specific cell fate, differentiation, and development

    Immunodetection of retinoblastoma-related protein and its phosphorylated form in interphase and mitotic alfalfa cells

    Get PDF
    Plant retinoblastoma-related (RBR) proteins are primarily considered as key regulators of G1/S phase transition, with functional roles in a variety of cellular events during plant growth and organ development. Polyclonal antibody against the C-terminal region of the Arabidopsis RBR1 protein also specifically recognizes the alfalfa 115 kDa MsRBR protein, as shown by the antigen competition assay. The MsRBR protein was detected in all cell cycle phases, with a moderate increase in samples representing G2/M cells. Antibody against the human phospho-pRb peptide (Ser807/811) cross-reacted with the same 115 kDa MsRBR protein and with the in vitro phosphorylated MsRBR protein C-terminal fragment. Phospho-MsRBR protein was low in G1 cells. Its amount increased upon entry into the S phase and remained high during the G2/M phases. Roscovitine treatment abolished the activity of alfalfa MsCDKA1;1 and MsCDKB2;1, and the phospho-MsRBR protein level was significantly decreased in the treated cells. Colchicine block increased the detected levels of both forms of MsRBR protein. Reduced levels of the MsRBR protein in cells at stationary phase or grown in hormone-free medium can be a sign of the division-dependent presence of plant RBR proteins. Immunolocalization of the phospho-MsRBR protein indicated spots of variable number and size in the labelled interphase nuclei and high signal intensity of nuclear granules in prophase. Structures similar to phospho-MsRBR proteins cannot be recognized in later mitotic phases. Based on the presented western blot and immunolocalization data, the possible involvement of RBR proteins in G2/M phase regulation in plant cells is discussed

    coreNASH: Multi-stakeholder Consensus on Core Outcomes for Decision Making About Nonalcoholic Steatohepatitis Treatment

    Get PDF
    The increasing prevalence and burden of nonalcoholic steatohepatitis (NASH) has spurred the development of new treatments and a need to consider outcomes used for NASH treatment decision making. Development of a NASH core outcome set (COS) can help prioritize outcomes of highest importance by incorporating the perspectives from a variety of decision makers. coreNASH was an initiative to develop a COS for NASH using a modified Delphi consensus process with a multi-stakeholder voting panel. A candidate outcome list was created based on a literature review and key informant interviews. The candidate outcome list was then condensed and prioritized through three rounds of online voting and through discussion at an in-person meeting. Outcomes were retained or eliminated based on predetermined consensus criteria, which included special weighting of patients’ opinions in the first two voting rounds. The coreNASH Delphi panel included 53 participants (7 patients, 10 clinicians and researchers, 7 health technology assessors, 22 industry representatives, 2 regulators, and 5 payers) who considered outcomes for two NASH-related COS: one for NASH without cirrhosis (F2-F3) and one for NASH with cirrhosis (F4). The initial candidate outcome list for both disease stages included 86 outcomes. The panel agreed on including two core outcomes for NASH without cirrhosis and nine core outcomes for NASH with cirrhosis in the COS. Conclusion: A consensus-based COS has been developed that can be used across the life cycle of NASH treatments. Outcomes included can contribute to decision making for regulatory, market access, and on-market decision making. Including the coreNASH COS in clinical development programs will facilitate improved comparisons and help decision makers assess the value of new products

    Cell cycle-dependent phosphorylation of pRb-like protein in root meristem cells of Vicia faba

    Get PDF
    The retinoblastoma tumor suppressor protein (pRb) regulates cell cycle progression by controlling the G1-to-S phase transition. As evidenced in mammals, pRb has three functionally distinct binding domains and interacts with a number of proteins including the E2F family of transcription factors, proteins with a conserved LxCxE motif (D-type cyclin), and c-Abl tyrosine kinase. CDK-mediated phosphorylation of pRb inhibits its ability to bind target proteins, thus enabling further progression of the cell cycle. As yet, the roles of pRb and pRb-binding factors have not been well characterized in plants. By using antibody which specifically recognizes phosphorylated serines (S807/811) in the c-Abl tyrosine kinase binding C-domain of human pRb, we provide evidence for the cell cycle-dependent changes in pRb-like proteins in root meristems cells of Vicia faba. An increased phosphorylation of this protein has been found correlated with the G1-to-S phase transition

    Cell Cycle Genes Are the Evolutionarily Conserved Targets of the E2F4 Transcription Factor

    Get PDF
    Maintaining quiescent cells in G0 phase is achieved in part through the multiprotein subunit complex known as DREAM, and in human cell lines the transcription factor E2F4 directs this complex to its cell cycle targets. We found that E2F4 binds a highly overlapping set of human genes among three diverse primary tissues and an asynchronous cell line, which suggests that tissue-specific binding partners and chromatin structure have minimal influence on E2F4 targeting. To investigate the conservation of these transcription factor binding events, we identified the mouse genes bound by E2f4 in seven primary mouse tissues and a cell line. E2f4 bound a set of mouse genes that was common among mouse tissues, but largely distinct from the genes bound in human. The evolutionarily conserved set of E2F4 bound genes is highly enriched for functionally relevant regulatory interactions important for maintaining cellular quiescence. In contrast, we found minimal mRNA expression perturbations in this core set of E2f4 bound genes in the liver, kidney, and testes of E2f4 null mice. Thus, the regulatory mechanisms maintaining quiescence are robust even to complete loss of conserved transcription factor binding events

    Coordinated Regulation of Intestinal Functions in C. elegans by LIN-35/Rb and SLR-2

    Get PDF
    LIN-35 is the sole C. elegans representative of the pocket protein family, which includes the mammalian Retinoblastoma protein pRb and its paralogs p107 and p130. In addition to having a well-established and central role in cell cycle regulation, pocket proteins have been increasingly implicated in the control of critical and diverse developmental and cellular processes. To gain a greater understanding of the roles of pocket proteins during development, we have characterized a synthetic genetic interaction between lin-35 and slr-2, which we show encodes a C2H2-type Zn-finger protein. Whereas animals harboring single mutations in lin-35 or slr-2 are viable and fertile, lin-35; slr-2 double mutants arrest uniformly in early larval development without obvious morphological defects. Using a combination of approaches including transcriptome profiling, mosaic analysis, starvation assays, and expression analysis, we demonstrate that both LIN-35 and SLR-2 act in the intestine to regulate the expression of many genes required for normal nutrient utilization. These findings represent a novel role for pRb family members in the maintenance of organ function. Our studies also shed light on the mechanistic basis of genetic redundancy among transcriptional regulators and suggest that synthetic interactions may result from the synergistic misregulation of one or more common targets
    corecore