466 research outputs found

    On-demand delivery of single DNA molecules using nanopipettes

    Get PDF
    Understanding the behavioral properties of single molecules or larger scale populations interacting with single molecules is currently a hotly pursued topic in nanotechnology. This arises from the potential such techniques have in relation to applications such as targeted drug delivery, early stage detection of disease, and drug screening. Although label and label-free single molecule detection strategies have existed for a number of years, currently lacking are efficient methods for the controllable delivery of single molecules in aqueous environments. In this article we show both experimentally and from simulations that nanopipets in conjunction with asymmetric voltage pulses can be used for label-free detection and delivery of single molecules through the tip of a nanopipet with ā€œon-demandā€ timing resolution. This was demonstrated by controllable delivery of 5 kbp and 10 kbp DNA molecules from solutions with concentrations as low as 3 pM

    The role of urea in neuronal degeneration and sensitization: an in vitro model of uremic neuropathy

    Get PDF
    Background: Uremic neuropathy commonly affects patients with chronic kidney disease (CKD), with painful sensations in the feet, followed by numbness and weakness in the legs and hands. The symptoms usually resolve following kidney transplantation, but the mechanisms of uremic neuropathy and associated pain symptoms remain unknown. As blood urea levels are elevated inpatients with CKD, we examined the morphological and functional effects of clinically observed levels of urea on sensory neurons. Methods: Rat DRG neurons were treated with 10or50 mMol/L urea for 48 hours, fixed and immunostained for PGP9.5 and Ī²III tubulin immunofluorescence, ,. Neurons were also immunostained for TRPV1, TRPM8 and Gap43 expression, and the capsaic insensitivity of urea or vehicle treated neurons was determined.Results: Urea treated neurons had degenerating neurites with diminished PGP9.5 immunofluorescence,and swollen, retracted growth cones. Ī²III tubulin appeared clumped after urea treatment. Neurite lengths were significantly reduced to 60 Ā± 2.6%(10 mMol/L, **P<0.01), and to 56.2Ā± 3.3 %, (50 mMol/L, **P<0.01),urea treatmentfor 48 hours, compared with control neurons. Fewer neurons survived urea treatment,with 70.08 Ā± 13.3% remaining after 10 mMol/L (*P<0.05), and 61.49 Ā± 7.4 % after 50 mMol/L ureatreatment (**P<0.01), compared with controls. The proportion of neurons expressing TRPV1 wasreduced after urea treatment, but not TRPM8 expressing neurons. In functional studies, treatment with urea resulted in dose-dependent neuronal sensitization.Capsaicinresponses were significantly increased to 115.29 Ā± 3.4%(10 mMol/L, **P<0.01) and 125.3 Ā± 4.2%(50 mMol/L,**P<0.01), compared with controls. Sensitization due to urea was eliminated in the presence of the TRPV1 inhibitor SB705498, the MEKinhibitor PD98059,the PI3 kinase inhibitor LY294002, and the TRPM8 inhibitor AMTB. ConclusionNeurite degenerationandsensitization are consistent with uremic neuropathy,, and provide a disease-relevant model to test new treatments

    Tailoring Nanoprobes for Single-Cell Surgery

    Get PDF

    Extracellular calcium reduction strongly increases the lytic capacity of pneumolysin from streptococcus pneumoniae in brain tissue

    Get PDF
    Background. Streptococcus pneumoniae causes serious diseases such as pneumonia and meningitis. Its major pathogenic factor is the cholesterol-dependent cytolysin pneumolysin, which produces lytic pores at high concentrations. At low concentrations, it has other effects, including induction of apoptosis. Many cellular effects of pneumolysin appear to be calcium dependent. Methods. Live imaging of primary mouse astroglia exposed to sublytic amounts of pneumolysin at various concentrations of extracellular calcium was used to measure changes in cellular permeability (as judged by lactate dehydrogenase release and propidium iodide chromatin staining). Individual pore properties were analyzed by conductance across artificial lipid bilayer. Tissue toxicity was studied in continuously oxygenated acute brain slices. Results. The reduction of extracellular calcium increased the lytic capacity of the toxin due to increased membrane binding. Reduction of calcium did not influence the conductance properties of individual toxin pores. In acute cortical brain slices, the reduction of extracellular calcium from 2 to 1 mM conferred lytic activity to pathophysiologically relevant nonlytic concentrations of pneumolysin. Conclusions. Reduction of extracellular calcium strongly enhanced the lytic capacity of pneumolysin due to increased membrane binding. Thus, extracellular calcium concentration should be considered as a factor of primary importance for the course of pneumococcal meningitis

    Nanoscale, Voltage-Driven Application of Bioactive Substances onto Cells with Organized Topography

    No full text
    With Scanning Ion Conductance Microscopy (SICM), a non-contact scanning probe technique, it is possible to obtain information about both the surface topography of live cells and to apply molecules onto specific nanoscale structures. The technique is therefore widely used to apply chemical compounds and to study the properties of molecules on the surface of various cell types. The heart muscle cells, the cardiomyocytes, possess a highly elaborate, unique surface topography including T-tubule openings leading into a cell internal system which exclusively har-bors many proteins necessary for the cells physiological function. Here we applied Isoproterenol into these surface openings by changing the applied voltage over the SICM nanopipette. To determine the grade of precision of our application we used finite element simulations to inves-tigate how the concentration profile varies over the cell surface. We first obtained topography scans of the cardiomyocytes using SICM and then determined the electrophoretic mobility of Isoproterenol in a high ion solution to be -7Ɨ10-9 m2/Vs. The simulations showed that the delivery to the T-tubule opening is highly confined to the underlying Z-groove and especially to the first T-tubule opening, where the concen-tration is approximately 6.5 times higher compared to on a flat surface under the same delivery settings. Delivery to the crest, instead of the T-tubule opening, resulted in a much lower concentration, emphasizing the importance of topography on agonist delivery. In conclusion SICM, unlike other techniques, can reliably deliver precise quantities of compounds to the T-tubules of cardiomyocyte

    On-Demand Delivery of Single DNA Molecules Using Nanopipets

    Get PDF
    Understanding the behavioral properties of single molecules or larger scale populations interacting with single molecules is currently a hotly pursued topic in nanotechnology. This arises from the potential such techniques have in relation to applications such as targeted drug delivery, early stage detection of disease, and drug screening. Although label and label-free single molecule detection strategies have existed for a number of years, currently lacking are efficient methods for the controllable delivery of single molecules in aqueous environments. In this article we show both experimentally and from simulations that nanopipets in conjunction with asymmetric voltage pulses can be used for label-free detection and delivery of single molecules through the tip of a nanopipet with ā€œon-demandā€ timing resolution. This was demonstrated by controllable delivery of 5 kbp and 10 kbp DNA molecules from solutions with concentrations as low as 3 pM

    Release of insulin granules by simultaneous, high-speed correlative SICM-FCM

    Get PDF
    Exocytosis of peptides and steroids stored in a dense core vesicular (DCV) form is the final step of every secretory pathway, indispensable for the function of nervous, endocrine and immune systems. The lack of live imaging techniques capable of direct, labelā€free visualisation of DCV release makes many aspects of the exocytotic process inaccessible to investigation. We describe the application of correlative scanning ion conductance and fluorescence confocal microscopy (SICMā€FCM) to study the exocytosis of individual granules of insulin from the top, nonadherent, surface of pancreatic Ī²ā€cells. Using SICMā€FCM, we were first to directly follow the topographical changes associated with physiologically induced release of insulin DCVs. This allowed us to report the kinetics of the full fusion of the insulin vesicle as well as the subsequent solubilisation of the released insulin crystal

    Short-term angiotensin II treatment regulates cardiac nanomechanics: Via microtubule modifications

    Get PDF
    Mechanical properties of single myocytes contribute to the whole heart performance, but the measurement of mechanics in living cells at high resolution with minimal force interaction remains challenging. Angiotensin II (AngII) is a peptide hormone that regulates a number of physiological functions, including heart performance. It has also been shown to contribute to cell mechanics by inducing cell stiffening. Using non-contact high-resolution Scanning Ion Conductance Microscopy (SICM), we determine simultaneously cell topography and membrane transverse Young's modulus (YM) by a constant pressure application through a nanopipette. While applying pressure, the vertical position is recorded and a deformation map is generated from which YM can be calculated and corrected for the uneven geometry. High resolution of this method also allows studying specific membrane subdomains, such as Z-grooves and crests. We found that short-term AngII treatment reduces the transversal YM in isolated adult rat cardiomyocytes acting via an AT1 receptor. Blocking either a TGF-Ī²1 receptor or Rho kinase abolishes this effect. Analysis of the cytoskeleton showed that AngII depletes microtubules by decreasing long-lived detyrosinated and acetylated microtubule populations. Interestingly, in the failing cardiomyocytes, which are stiffer than controls, the short-term AngII treatment also reduces the YM, thus normalizing the mechanical state of cells. This suggests that the short-term softening effect of AngII on cardiac cells is opposite to the well-characterized long-term hypertrophic effect. In conclusion, we generate a precise nanoscale indication map of location-specific transverse cortical YM within the cell and this can substantially advance our understanding of cellular mechanics in a physiological environment, for example in isolated cardiac myocytes

    Short-term angiotensin II treatment regulates cardiac nanomechanics via microtubule modifications.

    Get PDF
    Mechanical properties of single myocytes contribute to the whole heart performance, but the measurement of mechanics in living cells at high resolution with minimal force interaction remains challenging. Angiotensin II (AngII) is a peptide hormone that regulates a number of physiological functions, including heart performance. It has also been shown to contribute to cell mechanics by inducing cell stiffening. Using non-contact high-resolution Scanning Ion Conductance Microscopy (SICM), we determine simultaneously cell topography and membrane transverse Young's modulus (YM) by a constant pressure application through a nanopipette. While applying pressure, the vertical position is recorded and a deformation map is generated from which YM can be calculated and corrected for the uneven geometry. High resolution of this method also allows studying specific membrane subdomains, such as Z-grooves and crests. We found that short-term AngII treatment reduces the transversal YM in isolated adult rat cardiomyocytes acting via an AT1 receptor. Blocking either a TGF-Ī²1 receptor or Rho kinase abolishes this effect. Analysis of the cytoskeleton showed that AngII depletes microtubules by decreasing long-lived detyrosinated and acetylated microtubule populations. Interestingly, in the failing cardiomyocytes, which are stiffer than controls, the short-term AngII treatment also reduces the YM, thus normalizing the mechanical state of cells. This suggests that the short-term softening effect of AngII on cardiac cells is opposite to the well-characterized long-term hypertrophic effect. In conclusion, we generate a precise nanoscale indication map of location-specific transverse cortical YM within the cell and this can substantially advance our understanding of cellular mechanics in a physiological environment, for example in isolated cardiac myocytes
    • ā€¦
    corecore