1,061 research outputs found

    CB2 Receptor Deficiency Increases Amyloid Pathology and Alters Tau Processing in a Transgenic Mouse Model of Alzheimer\u27s Disease

    Get PDF
    The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer\u27s disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-)mice. Seventeen J20 CNR2(+/+) mice (12 females, 5 males) and 16 J20 CNR2(-/-) mice (11 females, 5 males) were killed at 12 months, and their brains were interrogated for AD-related pathology with both biochemistry and immunocytochemistry (ICC). In addition to amyloid-dependent endpoints such as soluble A beta production and plaque deposition quantified with 6E10 staining, the effect of CB2 receptor deletion on total soluble mouse tau production was assayed by using a recently developed high-sensitivity assay. Results revealed that soluble A beta 42 and plaque deposition were significantly increased in J20 CNR2(-/-) mice relative to CNR2(1/1) mice. Microgliosis, quantified with ionized calcium-binding adapter molecule 1 (Iba-1) staining, did not differ between groups, whereas plaque associated microglia was more abundant in J20 CNR2(-/-) mice. Total tau was significantly suppressed in J20 CNR2(-/-) mice relative to J20 CNR2(+/+) mice. The results confirm the constitutive role of the CB2 receptor system both in reducing amyloid plaque pathology in AD and also support tehpotential of cannabinoid therapies targeting CB2 to reduce A beta; however, the results suggest that interventions may have a divergent effect on tau pathology

    Persistence, extinction and spatio-temporal synchronization of SIRS cellular automata models

    Full text link
    Spatially explicit models have been widely used in today's mathematical ecology and epidemiology to study persistence and extinction of populations as well as their spatial patterns. Here we extend the earlier work--static dispersal between neighbouring individuals to mobility of individuals as well as multi-patches environment. As is commonly found, the basic reproductive ratio is maximized for the evolutionary stable strategy (ESS) on diseases' persistence in mean-field theory. This has important implications, as it implies that for a wide range of parameters that infection rate will tend maximum. This is opposite with present results obtained in spatial explicit models that infection rate is limited by upper bound. We observe the emergence of trade-offs of extinction and persistence on the parameters of the infection period and infection rate and show the extinction time having a linear relationship with respect to system size. We further find that the higher mobility can pronouncedly promote the persistence of spread of epidemics, i.e., the phase transition occurs from extinction domain to persistence domain, and the spirals' wavelength increases as the mobility increasing and ultimately, it will saturate at a certain value. Furthermore, for multi-patches case, we find that the lower coupling strength leads to anti-phase oscillation of infected fraction, while higher coupling strength corresponds to in-phase oscillation.Comment: 12page

    Combining cytotoxicity assessment and Xenopus laevis phenotypic abnormality assay as a predictor of nanomaterial safety

    Get PDF
    The African clawed frog, Xenopus laevis, has been used as an efficient pre-clinical screening tool to predict drug safety during the early stages of the drug discovery process. X. laevis is a relatively inexpensive model that can be used in whole organism high-throughput assays whilst maintaining a high degree of homology to the higher vertebrate models often used in scientific research. Despite an ever-increasing volume of biomedical nanoparticles (NPs) in development, their unique physico-chemical properties challenge the use of standard toxicology assays. Here, we present a protocol that directly compares the sensitivity of X. laevis development as a tool to assess potential NP toxicity by observation of embryo phenotypic abnormalities/lethality after NP exposure to in vitro cytotoxicity obtained using mammalian cell lines. In combination with conventional cytotoxicity assays, the X. laevis phenotypic assay provides accurate data to efficiently assess the safety of a novel biomedical NP

    Authorship Analysis Approaches

    Get PDF
    This chapter presents an overview of authorship analysis from multiple standpoints. It includes historical perspective, description of stylometric features, and authorship analysis techniques and their limitations

    Psychotic Alzheimer\u27s disease is associated with gender-specific tau phosphorylation abnormalities

    Get PDF
    Converging evidence suggests that psychotic Alzheimer\u27s disease (AD + P) is associated with an acceleration of frontal degeneration, with tau pathology playing a primary role. Previous histopathologic and biomarker studies have specifically implicated tau pathology in this condition. To precisely quantify tau abnormalities in the frontal cortex in AD + P, we used a sensitive biochemical assay of total tau and 4 epitopes of phospho-tau relevant in AD pathology in a postmortem sample of AD + P and AD - P. Samples of superior frontal gyrus from 26 AD subjects without psychosis and 45 AD + P subjects with psychosis were analyzed. Results of enzyme-linked immunosorbent assay demonstrate that AD + P females, but not males, had significantly higher levels of phosphorylated tau in the frontal cortex. In males, but not females, AD + P was associated with the presence of alpha-synuclein pathology. These results support a gender dissociation of pathology in AD + P. The design of future studies aimed at the elucidation of cognitive and/or functional outcomes; regional brain metabolic deficits; or genetic correlates of AD + P should take gender into consideration. (C) 2014 Elsevier Inc. All rights reserved

    Fast flowing populations are not well mixed

    Get PDF
    In evolutionary dynamics, well-mixed populations are almost always associated with all-to-all interactions; mathematical models are based on complete graphs. In most cases, these models do not predict fixation probabilities in groups of individuals mixed by flows. We propose an analytical description in the fast-flow limit. This approach is valid for processes with global and local selection, and accurately predicts the suppression of selection as competition becomes more local. It provides a modelling tool for biological or social systems with individuals in motion.Comment: 19 pages, 8 figure

    Tiger reefs: Self‐organized regular patterns in deep‐sea cold‐water coral reefs

    Get PDF
    Complexity theory predicts that self-organized, regularly patterned ecosystems store more biomass and are more resilient than spatially uniform systems. Self-organized ecosystems are well-known from the terrestrial realm, with “tiger bushes” being the archetypical example and mussel beds and tropical coral reefs the marine examples. We here identify regular spatial patterns in cold-water coral reefs (nicknamed “tiger reefs”) from video transects and argue that these are likely the result of self-organization. We used variograms and Lomb–Scargle analysis of seven annotated video transects to analyze spatial patterns in live coral and dead coral (i.e., skeletal remains) cover at the Logachev coral mound province (NE Atlantic Ocean) and found regular spatial patterns with length scales between 62 and 523 m in live and dead coral distribution along these transects that point to self-organization of cold-water coral reefs. Self-organization theory shows that self-organized ecosystems can withstand large environmental changes by adjusting their spatial configuration. We found indications that cold-water corals can similarly adjust their spatial configuration, possibly providing resilience in the face of climate change. Dead coral framework remains in the environment for extended periods of time, providing a template for spatial patterns that facilitates live coral recovery. The notion of regular spatial patterns in cold-water coral reefs is interesting for cold-water coral restoration, as transplantation will be more successful when it follows the patterns that are naturally present. This finding also underlines that anthropogenic effects such as ocean acidification and bottom trawling that destroy the dead coral template undermine cold-water coral resilience. Differences in the pattern periodicities of live and dead coral cover further present an interesting new angle to investigate past and present environmental conditions in cold-water coral reefs

    Tiger reefs: Self-organized regular patterns in deep-sea cold-water coral reefs

    Get PDF
    Abstract Complexity theory predicts that self-organized, regularly patterned ecosystems store more biomass and are more resilient than spatially uniform systems. Self-organized ecosystems are well-known from the terrestrial realm, with “tiger bushes” being the archetypical example and mussel beds and tropical coral reefs the marine examples. We here identify regular spatial patterns in cold-water coral reefs (nicknamed “tiger reefs”) from video transects and argue that these are likely the result of self-organization. We used variograms and Lomb–Scargle analysis of seven annotated video transects to analyze spatial patterns in live coral and dead coral (i.e., skeletal remains) cover at the Logachev coral mound province (NE Atlantic Ocean) and found regular spatial patterns with length scales between 62 and 523 m in live and dead coral distribution along these transects that point to self-organization of cold-water coral reefs. Self-organization theory shows that self-organized ecosystems can withstand large environmental changes by adjusting their spatial configuration. We found indications that cold-water corals can similarly adjust their spatial configuration, possibly providing resilience in the face of climate change. Dead coral framework remains in the environment for extended periods of time, providing a template for spatial patterns that facilitates live coral recovery. The notion of regular spatial patterns in cold-water coral reefs is interesting for cold-water coral restoration, as transplantation will be more successful when it follows the patterns that are naturally present. This finding also underlines that anthropogenic effects such as ocean acidification and bottom trawling that destroy the dead coral template undermine cold-water coral resilience. Differences in the pattern periodicities of live and dead coral cover further present an interesting new angle to investigate past and present environmental conditions in cold-water coral reefs
    • 

    corecore