301 research outputs found
Social behavior modeling based on Incremental Discrete Hidden Markov Models
12 pagesInternational audienceModeling multimodal face-to-face interaction is a crucial step in the process of building social robots or users-aware Embodied Conversational Agents (ECA). In this context, we present a novel approach for human behavior analysis and generation based on what we called "Incremental Discrete Hidden Markov Model" (IDHMM). Joint multimodal activities of interlocutors are first modeled by a set of DHMMs that are specific to supposed joint cognitive states of the interlocutors. Respecting a task-specific syntax, the IDHMM is then built from these DHMMs and split into i) a recognition model that will determine the most likely sequence of cognitive states given the multimodal activity of the in- terlocutor, and ii) a generative model that will compute the most likely activity of the speaker given this estimated sequence of cognitive states. Short-Term Viterbi (STV) decoding is used to incrementally recognize and generate behav- ior. The proposed model is applied to parallel speech and gaze data of interact- ing dyads
Incidence trends of lung and gastroenteropancreatic neuroendocrine neoplasms in Switzerland.
The incidence of neuroendocrine neoplasms (NENs) seems to increase worldwide. Long-term, population-based series that consider tumor differentiation are, however, sparse. We assessed the incidence trend of lung and gastroenteropancreatic (GEP) NENs according to the latest International Agency for Research on Cancer/World Health Organization classification over a 41-year time period in two Swiss regions. All cases of lung and GEP NENs recorded in the Vaud and Neuchâtel Cancer Registries from 1976 to 2016 were included. NENs were stratified into well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Changes in annual age-standardized incidence rates were calculated for lung and GEP NETs and NECs by sex. Of 4,141 patients diagnosed with NENs, 65% were men. The incidence of lung NETs among men and women increased by 3.9%/year (95% CI: -5.3, 14.1%) and 4.9%/year (0.1, 9.9%), respectively, between 1976 and 2016. The incidence of lung NECs decreased by 2.6%/year (-3.1,-1.8%) in men from 1985 to 2016 whereas it increased in women between 1976 and 1998 by 6%/year (4.2, 7.9%). For GEP NETs, a steady annual increase in incidence occurred between 1976 and 2016 with a magnitude of 1.7% (0.7, 2.7%) in men and 1.3% (0.5, 2.1%) in women. No significant trend in incidence of GEP NECs was found for both sexes. The incidence trends of lung NECs in men and women parallel changes in smoking prevalence in the population. Causes of the increase in incidence of GEP NETs are likely multifactorial. Our study supports the importance of evaluating the epidemiology of NENs by tumor differentiation
EIS/Hinode observations of Doppler flow seen through the 40 arcsec wide slit
The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode is the
first solar telescope to obtain wide slit spectral images that can be used for
detecting Doppler flows in transition region and coronal lines on the Sun and
to relate them to their surrounding small scale dynamics. We select EIS lines
covering the temperature range 6x10^4 K to 2x10^6 K that give spectrally pure
images of the Sun with the 40 arcsec slit. In these images Doppler shifts are
seen as horizontal brightenings. Inside the image it is difficult to
distinguish shifts from horizontal structures but emission beyond the image
edge can be unambiguously identified as a line shift in several lines separated
from others on their blue or red side by more than the width of the
spectrometer slit (40 pixels). In the blue wing of He II, we find a large
number of events with properties (size and lifetime) similar to the
well-studied explosive events seen in the ultraviolet spectral range.
Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at
the footpoints of small X-ray loops. The most spectacular event observed showed
a strong blue shift in transition region and lower corona lines from a small
X-ray spot that lasted less than 7 min. The emission appears to be near a cool
coronal loop connecting an X-ray bright point to an adjacent region of quiet
Sun. The width of the emission implies a line-of-sight velocity of 220 km/s. In
addition, we show an example of an Fe XV shift with a velocity about 120 km/s,
coming from what looks like a narrow loop leg connecting a small X-ray
brightening to a larger region of X-ray emission.Comment: 12 pages, 8 figures, to be published in Solar Physic
Dark Matter attempts for CoGeNT and DAMA
Recently, the CoGeNT collaboration presented a positive signal for an annual
modulation in their data set. In light of the long standing annual modulation
signal in DAMA/LIBRA, we analyze the compatibility of both of these signal
within the hypothesis of dark matter (DM) scattering on nuclei, taking into
account existing experimental constraints. We consider the cases of elastic and
inelastic scattering with either spin-dependent or spin-independent coupling to
nucleons. We allow for isospin violating interactions as well as for light
mediators. We find that there is some tension between the size of the
modulation signal and the time-integrated event excess in CoGeNT, making it
difficult to explain both simultaneously. Moreover, within the wide range of DM
interaction models considered, we do not find a simultaneous explanation of
CoGeNT and DAMA/LIBRA compatible with constraints from other experiments.
However, in certain cases part of the data can be made consistent. For example,
the modulation signal from CoGeNT becomes consistent with the total rate and
with limits from other DM searches at 90% CL (but not with the DAMA/LIBRA
signal) if DM scattering is inelastic spin-independent with just the right
couplings to protons and neutrons to reduce the scattering rate on xenon.
Conversely the DAMA/LIBRA signal (but not CoGeNT) can be explained by
spin-dependent inelastic DM scattering.Comment: 20 pages, 9 figure
Measuring the Relative Strong Phase in and Decays
In a recently suggested method for measuring the weak phase in
decays, the relative strong phase in and decays (equivalently, in and \od \to K^{*+} K^-) plays a role. It is shown how a study of
the Dalitz plot in can yield information on this phase,
and the size of the data sample which would give a useful measurement is
estimated.Comment: 13 pages, latex, 5 figures, submitted to Phys. Rev. D. Appendix and
some text on additional resonant contributions adde
Hadronic Charmed Meson Decays Involving Tensor Mesons
Charmed meson decays into a pseudoscalar meson P and a tensor meson T are
studied. The charm to tensor meson transition form factors are evaluated in the
Isgur-Scora-Grinstein-Wise (ISGW) quark model. It is shown that the
Cabibbo-allowed decay is dominated by the
W-annihilation contribution and has the largest branching ratio in
decays. We argue that the Cabibbo-suppressed mode
should be suppressed by one order of magnitude relative to . When the finite width effect of the tensor resonances is taken
into account, the decay rate of is generally enhanced by a factor of
. Except for , the predicted branching ratios
of decays are in general too small by one to two orders of magnitude
compared to experiment. However, it is very unlikely that the
transition form factors can be enhanced by a factor of within the
ISGW quark model to account for the discrepancy between theory and experiment.
As many of the current data are still preliminary and lack sufficient statistic
significance, more accurate measurements are needed to pin down the issue.Comment: 11 page
Hadronic Charmed Meson Decays Involving Axial Vector Mesons
Cabibbo-allowed charmed meson decays into a pseudoscalar meson and an
axial-vector meson are studied. The charm to axial-vector meson transition form
factors are evaluated in the Isgur-Scora-Grinstein-Wise quark model. The dipole
momentum dependence of the transition form factor and the presence of
a sizable long-distance -exchange are the two key ingredients for
understanding the data of . The mixing angle of
the strange axial-vector mesons is found to be or
from decays. The study of decays excludes the positive mixing-angle
solutions. It is pointed out that an observation of the decay at the level of will rule out
and favor the solution .
Though the decays are color suppressed, they are
comparable to and even larger than the color-allowed counterparts: and . The finite width effect of the axial-vector resonance is
examined. It becomes important for in particular when its width is
near 600 MeV.Comment: 19 page
The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells
BACKGROUND: Identification and characterization of molecular controls that regulate mammary stem and progenitor cell homeostasis are critical to our understanding of normal mammary gland development and its pathology. RESULTS: We demonstrate that conditional knockout of Sox9 in the mouse mammary gland results in impaired postnatal development. In short-term lineage tracing in the postnatal mouse mammary gland using Sox9-CreER driven reporters, Sox9 marked primarily the luminal progenitors and bipotent stem/progenitor cells within the basal mammary epithelial compartment. In contrast, long-term lineage tracing studies demonstrate that Sox9+ precursors gave rise to both luminal and myoepithelial cell lineages. Finally, fate mapping of Sox9 deleted cells demonstrates that Sox9 is essential for luminal, but not myoepithelial, lineage commitment and proliferation. CONCLUSIONS: These studies identify Sox9 as a key regulator of mammary gland development and stem/progenitor maintenance
A Statistical Study on the Morphology of Rays and Dynamics of Blobs in the Wake of Coronal Mass Ejections
In this paper, with a survey through the Large Angle and Spectrometric
Coronagraph (LASCO) data from 1996 to 2009, we present 11 events with plasma
blobs flowing outwards sequentially along a bright coronal ray in the wake of a
coronal mass ejection. The ray is believed to be associated with the current
sheet structure that formed as a result of solar eruption, and the blobs are
products of magnetic reconnection occurring along the current sheet. The ray
morphology and blob dynamics are investigated statistically. It is found that
the apparent angular widths of the rays at a fixed time vary in a range of
2.1-6.6 (2.0-4.4) degrees with an average of 3.5 (2.9) degrees at 3 (4) Rs,
respectively, and the observed durations of the events vary from 12 h to a few
days with an average of 27 h. It is also found, based on the analysis of blob
motions, that 58% (26) of the blobs were accelerated, 20% (9) were decelerated,
and 22% (10) moved with a nearly-constant speed. Comparing the dynamics of our
blobs and those that are observed above the tip of a helmet streamer, we find
that the speeds and accelerations of the blobs in these two cases differ
significantly. It is suggested that these differences of the blob dynamics stem
from the associated magnetic reconnection involving different magnetic field
configurations and triggering processes.Comment: 12 pages, 6 figures, accepted by Solar Physic
Improved Constraints on Inelastic Dark Matter
We perform an extensive study of the DAMA annual modulation data in the
context of inelastic dark matter. We find that inelastic dark matter with mass
m > 15 GeV is excluded at the 95% confidence level by the combination of DAMA
spectral information and results from other direct detection experiments.
However, at smaller m, inelastic dark matter constitutes a possible solution to
the DAMA puzzle.Comment: 22 pages, 7 figures, Reference added, matches published versio
- …