22 research outputs found

    Impact of the 2015 wildfires on Malaysian air quality and exposure: a comparative study of observed and modeled data

    Get PDF
    In September and October 2015, Equatorial Asia experienced the most intense biomass burning episodes over the past two decades. These events, mostly enhanced by the extremely dry weather associated with the occurrence of strong El Niño conditions, resulted in the transnational transport of hazardous pollutants from the originating sources in Indonesian Borneo and Sumatra to the highly populated Malaysian Peninsula. Quantifying the population exposure form this event is a major challenge, and only two model-based studies have been performed to date, with limited evaluation against measurements. This manuscript presents a new data set of 49 monitoring stations across Peninsular Malaysia and Malaysian Borneo active during the 2015 haze event, and performs the first comparative study of PM10 (particulate matter with diameter < 10 µm) and carbon monoxide (CO) against the output of a state-of-the-art regional model (WRF-Chem). WRF-Chem presents high skills in describing the spatio-temporal patterns of both PM10 and CO and thus was applied to estimate the impact of the 2015 wildfires on population exposure. This study showed that more than 60% of the population living in the highly populated region of the Greater Klang Valley was systematically exposed to unhealthy/hazardous air quality conditions associated with the increased pollutant concentrations from wildfires and that almost 40% of the Malaysian population was on average exposed to PM10 concentrations higher than 100 µg m−3 during September and October 2015

    Polymer nanocomposite sunlight spectrum down-converters made by open-air PLD

    No full text
    We report, for the first time to our knowledge, on the polymer nanocomposite sunlight spectrum down-converters made by the concurrent multi-beam multi-target pulsed laser deposition (CMBMT-PLD) of phosphor and polymer in ambient air. Phosphor PLD targets were made of down-converting rare-earth (RE)-doped fluorides NaYF4:Yb3+,Er3+, and NaYF4:Yb3+,Tm3+ with a Stokes shift of 620 nm (from 360 to 980 nm), minimizing the effect of re-absorption. The phosphors were synthesized by the wet method. Polymer target was made of poly (methyl methacrylate) known as PMMA. Target ablation was conducted with 1,064 nm beams from an Nd:YAG Q-switched laser. Beam intensity was 2.8 × 1016 W/cm2 for both targets. The substrate was a microscope glass slide. Phosphor nanoparticles with a size ranging from 10 to 50 nm were evenly distributed in the polymer matrix during deposition. The nanoparticles retained the crystalline structure and the fluorescent properties of the phosphor target. There was no noticeable chemical decomposition of the deposited polymer. The products of laser-induced reaction of the polymer target with atmospheric gases did not reach the substrate during PLD. Post-heating of the substrate at ∼90°C led to fusion of separate polymer droplets into uniform coating. Quantum yield of the down-conversion polymer nanocomposite film was estimated to be not less than ∼5%. The proposed deposition method can find its application in making commercial-size down-converter coatings for photo-voltaic solar power applications

    Fires, Smoke Exposure, and Public Health: An Integrative Framework to Maximize Health Benefits From Peatland Restoration

    No full text
    Emissions of particulate matter from fires associated with land management practices in Indonesia contribute to regional air pollution and mortality. We assess the public health benefits in Indonesia, Malaysia, and Singapore from policies to reduce fires by integrating information on fire emissions, atmospheric transport patterns, and population exposure to fine particulate matter (PM2.5). We use adjoint sensitivities to relate fire emissions to PM2.5 for a range of meteorological conditions and find that a Business-As-Usual scenario of land use change leads, on average, to 36,000 excess deaths per year into the foreseeable future (the next several decades) across the region. These deaths are largely preventable with fire reduction strategies, such as blocking fires in peatlands, industrial concessions, or protected areas, which reduce the health burden by 66, 45, and 14%, respectively. The effectiveness of these different strategies in mitigating human health impacts depends on the location of fires relative to the population distribution. For example, protecting peatlands through eliminating all fires on such lands would prevent on average 24,000 excess deaths per year into the foreseeable future across the region because, in addition to storing large amounts of fuel, many peatlands are located directly upwind of densely populated areas. We also demonstrate how this framework can be used to prioritize restoration locations for the Indonesian Peatland Restoration Agency based on their ability to reduce pollution exposure and health burden. This scientific framework is publicly available through an online decision support tool that allows stakeholders to readily determine the public health benefits of different land management strategies
    corecore