568 research outputs found

    Ranking ligand affinity for the DNA minor groove by experiment and simulation

    Get PDF
    The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences

    Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade <it>Milnesium tardigradum</it> were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress.</p> <p>Results</p> <p>In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurable metabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration.</p> <p>Conclusions</p> <p>The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.</p

    Metabolome Analysis of the Interaction Between Perennial Ryegrass (\u3cem\u3eLolium Perenne\u3c/em\u3e) and the Fungal Endophyte \u3cem\u3eNeotyphodium Lolii\u3c/em\u3e

    Get PDF
    Perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) frequently contain endophytic fungi (Neotyphodium lolii in perennial ryegrass and N. coenophialum in tall fescue). The presence of the endophyte has been shown to improve seedling vigour, persistence and drought tolerance in marginal environments as well as provide protection against some insect pests. Endophyte-infected grasses also produce a wide range of metabolites, including ergopeptine alkaloids, indole-isoprenoid lolitrems, pyrrolizidine alkaloids, and pyrrolopyrazine alkaloids. In contrast to information on alkaloids and animal toxicosis, the beneficial physiological aspects of the endophyte/grass interactions have not been well characterised. The physiological mechanisms which lead to increased plant vigour and enhanced tolerance to abiotic stresses unrelated to the reduction in pest damage to endophyte-infected grasses are unknown. Recent technological advances in metabolomics enable dynamic changes in the metabolome of an organism under varying experimental conditions to be studied. This provides opportunities for the investigation and validation of each and every detected metabolite, investigation of known metabolic pathways through searching of databases of known metabolites, molecular formula determination of unknown metabolites and creation of pathways from novel metabolites

    Decision tree supported substructure prediction of metabolites from GC-MS profiles

    Get PDF
    Gas chromatography coupled to mass spectrometry (GC-MS) is one of the most widespread routine technologies applied to the large scale screening and discovery of novel metabolic biomarkers. However, currently the majority of mass spectral tags (MSTs) remains unidentified due to the lack of authenticated pure reference substances required for compound identification by GC-MS. Here, we accessed the information on reference compounds stored in the Golm Metabolome Database (GMD) to apply supervised machine learning approaches to the classification and identification of unidentified MSTs without relying on library searches. Non-annotated MSTs with mass spectral and retention index (RI) information together with data of already identified metabolites and reference substances have been archived in the GMD. Structural feature extraction was applied to sub-divide the metabolite space contained in the GMD and to define the prediction target classes. Decision tree (DT)-based prediction of the most frequent substructures based on mass spectral features and RI information is demonstrated to result in highly sensitive and specific detections of sub-structures contained in the compounds. The underlying set of DTs can be inspected by the user and are made available for batch processing via SOAP (Simple Object Access Protocol)-based web services. The GMD mass spectral library with the integrated DTs is freely accessible for non-commercial use at http://gmd.mpimp-golm.mpg.de/. All matching and structure search functionalities are available as SOAP-based web services. A XML + HTTP interface, which follows Representational State Transfer (REST) principles, facilitates read-only access to data base entities

    Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA

    Get PDF
    A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules

    Torsional sensing of small-molecule binding using magnetic tweezers

    Get PDF
    DNA-binding small molecules are widespread in the cell and heavily used in biological applications. Here, we use magnetic tweezers, which control the force and torque applied to single DNAs, to study three small molecules: ethidium bromide (EtBr), a well-known intercalator; netropsin, a minor-groove binding anti-microbial drug; and topotecan, a clinically used anti-tumor drug. In the low-force limit in which biologically relevant torques can be accessed (<10 pN), we show that ethidium intercalation lengthens DNA ∼1.5-fold and decreases the persistence length, from which we extract binding constants. Using our control of supercoiling, we measure the decrease in DNA twist per intercalation to be 27.3 ± 1° and demonstrate that ethidium binding delays the accumulation of torsional stress in DNA, likely via direct reduction of the torsional modulus and torque-dependent binding. Furthermore, we observe that EtBr stabilizes the DNA duplex in regimes where bare DNA undergoes structural transitions. In contrast, minor groove binding by netropsin affects neither the contour nor persistence length significantly, yet increases the twist per base of DNA. Finally, we show that topotecan binding has consequences similar to those of EtBr, providing evidence for an intercalative binding mode. These insights into the torsional consequences of ligand binding can help elucidate the effects of small-molecule drugs in the cellular environment

    A Central Role of Abscisic Acid in Stress-Regulated Carbohydrate Metabolism

    Get PDF
    Background: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA) plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. Principal Findings: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. Significance: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology

    Effectiveness of cricoid pressure in preventing gastric aspiration during rapid sequence intubation in the emergency department: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cricoid pressure is considered to be the gold standard means of preventing aspiration of gastric content during Rapid Sequence Intubation (RSI). Its effectiveness has only been demonstrated in cadaveric studies and case reports. No randomised controlled trials comparing the incidence of gastric aspiration following emergent RSI, with or without cricoid pressure, have been performed. If improperly applied, cricoid pressure increases risk to the patient. The clinical significance of aspiration in the emergency department is unknown. This randomised controlled trial aims to; 1. Compare the application of the 'ideal" amount of force (30 - 40 newtons) to standard, unmeasured cricoid pressure and 2. Determine the incidence of clinically defined aspiration syndromes following RSI using a fibrinogen degradation assay previously described.</p> <p>Methods/design</p> <p>212 patients requiring emergency intubation will be randomly allocated to either control (unmeasured cricoid pressure) or intervention groups (30 - 40 newtons cricoid pressure). The primary outcome is the rate of aspiration of gastric contents (determined by pepsin detection in the oropharyngeal/tracheal aspirates or treatment for aspiration pneumonitis up to 28 days post-intubation). Secondary outcomes are; correlation between aspiration and lowest pre-intubation Glasgow Coma Score, the relationship between detection of pepsin in trachea and development of aspiration syndromes, complications associated with intubation and grade of the view on direct largyngoscopy.</p> <p>Discussion</p> <p>The benefits and risks of cricoid pressure application will be scrutinised by comparison of the incidence of aspiration and difficult or failed intubations in each group. The role of cricoid pressure in RSI in the emergency department and the use of a pepsin detection as a predictor of clinical aspiration will be evaluated.</p> <p>Trial registration</p> <p>Australian New Zealand Clinical Trials Registry (ANZCTR): <a href="http://www.anzctr.org.au/ACTRN12611000587909.aspx">ACTRN12611000587909</a></p

    Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy (177Lu-PSMA-RLT)

    Get PDF
    Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&amp;T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis
    corecore