546 research outputs found

    A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.

    No full text
    Artemisinin-based therapies are the only effective treatment for malaria, the most devastating disease in human history. To meet the growing demand for artemisinin and make it accessible to the poorest, an inexpensive and rapidly scalable production platform is urgently needed. Here we have developed a new synthetic biology approach, combinatorial supertransformation of transplastomic recipient lines (COSTREL), and applied it to introduce the complete pathway for artemisinic acid, the precursor of artemisinin, into the high-biomass crop tobacco. We first introduced the core pathway of artemisinic acid biosynthesis into the chloroplast genome. The transplastomic plants were then combinatorially supertransformed with cassettes for all additional enzymes known to affect flux through the artemisinin pathway. By screening large populations of COSTREL lines, we isolated plants that produce more than 120 milligram artemisinic acid per kilogram biomass. Our work provides an efficient strategy for engineering complex biochemical pathways into plants and optimizing the metabolic output. DOI: http://dx.doi.org/10.7554/eLife.13664.00

    Ranking ligand affinity for the DNA minor groove by experiment and simulation

    Get PDF
    The structural and thermodynamic basis for the strength and selectivity of the interactions of minor-groove binders (MGBs) with DNA is not fully understood. In 2003 we reported the first example of a thiazole containing MGB that bound in a phase shifted pattern that spanned 6 base-pairs rather than the usual 4 (for tricyclic distamycin-like compounds). Since then, using DNA footprinting, nuclear magnetic resonance spectroscopy, isothermal titration calorimetry and molecular dynamics, we have established that the flanking bases around the central 4 being read by the ligand have subtle effects on recognition. We have investigated the effect of these flanking sequences on binding and the reasons for the differences and established a computational method to rank ligand affinity against varying DNA sequences

    The molecular origin of DNA-drug specificity in netropsin and distamycin.

    Full text link

    Metabolome Analysis of the Interaction Between Perennial Ryegrass (\u3cem\u3eLolium Perenne\u3c/em\u3e) and the Fungal Endophyte \u3cem\u3eNeotyphodium Lolii\u3c/em\u3e

    Get PDF
    Perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) frequently contain endophytic fungi (Neotyphodium lolii in perennial ryegrass and N. coenophialum in tall fescue). The presence of the endophyte has been shown to improve seedling vigour, persistence and drought tolerance in marginal environments as well as provide protection against some insect pests. Endophyte-infected grasses also produce a wide range of metabolites, including ergopeptine alkaloids, indole-isoprenoid lolitrems, pyrrolizidine alkaloids, and pyrrolopyrazine alkaloids. In contrast to information on alkaloids and animal toxicosis, the beneficial physiological aspects of the endophyte/grass interactions have not been well characterised. The physiological mechanisms which lead to increased plant vigour and enhanced tolerance to abiotic stresses unrelated to the reduction in pest damage to endophyte-infected grasses are unknown. Recent technological advances in metabolomics enable dynamic changes in the metabolome of an organism under varying experimental conditions to be studied. This provides opportunities for the investigation and validation of each and every detected metabolite, investigation of known metabolic pathways through searching of databases of known metabolites, molecular formula determination of unknown metabolites and creation of pathways from novel metabolites

    Autoinducers act as biological timers in Vibrio harveyi

    Get PDF
    Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii), one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations

    Expanding the Repertoire of Natural Product-Inspired Ring Pairs for Molecular Recognition of DNA

    Get PDF
    A furan amino acid, inspired by the recently discovered proximicin natural products, was incorporated into the scaffold of a DNA-binding hairpin polyamide. While unpaired oligomers of 2,4-disubstituted furan amino acids show poor DNA-binding activity, furan (Fn) carboxamides paired with N-methylpyrrole (Py) and N-methylimidazole (Im) rings demonstrate excellent stabilization of duplex DNA as well as discrimination of noncognate sequences, consistent with function as a Py mimic according to the Py/Im polyamide pairing rules

    Dissecting Rice Polyamine Metabolism under Controlled Long-Term Drought Stress

    Get PDF
    A selection of 21 rice cultivars (Oryza sativa L. ssp. indica and japonica) was characterized under moderate long-term drought stress by comprehensive physiological analyses and determination of the contents of polyamines and selected metabolites directly related to polyamine metabolism. To investigate the potential regulation of polyamine biosynthesis at the transcriptional level, the expression of 21 genes encoding enzymes involved in these pathways were analyzed by qRT-PCR. Analysis of the genomic loci revealed that 11 of these genes were located in drought-related QTL regions, in agreement with a proposed role of polyamine metabolism in rice drought tolerance. The cultivars differed widely in their drought tolerance and parameters such as biomass and photosynthetic quantum yield were significantly affected by drought treatment. Under optimal irrigation free putrescine was the predominant polyamine followed by free spermidine and spermine. When exposed to drought putrescine levels decreased markedly and spermine became predominant in all cultivars. There were no correlations between polyamine contents and drought tolerance. GC-MS analysis revealed drought-induced changes of the levels of ornithine/arginine (substrate), substrates of polyamine synthesis, proline, product of a competing pathway and GABA, a potential degradation product. Gene expression analysis indicated that ADC-dependent polyamine biosynthesis responded much more strongly to drought than the ODC-dependent pathway. Nevertheless the fold change in transcript abundance of ODC1 under drought stress was linearly correlated with the drought tolerance of the cultivars. Combining metabolite and gene expression data, we propose a model of the coordinate adjustment of polyamine biosynthesis for the accumulation of spermine under drought conditions

    Transcriptomic, proteomic and metabolomic analysis of UV-B signaling in maize

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Under normal solar fluence, UV-B damages macromolecules, but it also elicits physiological acclimation and developmental changes in plants. Excess UV-B decreases crop yield. Using a treatment twice solar fluence, we focus on discovering signals produced in UV-B-irradiated maize leaves that translate to systemic changes in shielded leaves and immature ears.</p> <p>Results</p> <p>Using transcriptome and proteomic profiling, we tracked the kinetics of transcript and protein alterations in exposed and shielded organs over 6 h. In parallel, metabolic profiling identified candidate signaling molecules based on rapid increase in irradiated leaves and increased levels in shielded organs; pathways associated with the synthesis, sequestration, or degradation of some of these potential signal molecules were UV-B-responsive. Exposure of just the top leaf substantially alters the transcriptomes of both irradiated and shielded organs, with greater changes as additional leaves are irradiated. Some phenylpropanoid pathway genes are expressed only in irradiated leaves, reflected in accumulation of pathway sunscreen molecules. Most protein changes detected occur quickly: approximately 92% of the proteins in leaves and 73% in immature ears changed after 4 h UV-B were altered by a 1 h UV-B treatment.</p> <p>Conclusions</p> <p>There were significant transcriptome, proteomic, and metabolomic changes under all conditions studied in both shielded and irradiated organs. A dramatic decrease in transcript diversity in irradiated and shielded leaves occurs between 0 h and 1 h, demonstrating the susceptibility of plants to short term UV-B spikes as during ozone depletion. Immature maize ears are highly responsive to canopy leaf exposure to UV-B.</p

    Optimisation of the event-based TOF filtered back-projection for online imaging in total-body J-PET

    Get PDF
    We perform a parametric study of the newly developed time-of-flight (TOF) image reconstruction algorithm, proposed for the real-time imaging in total-body Jagiellonian PET (J-PET) scanners. The asymmetric 3D filtering kernel is applied at each most likely position of electron-positron annihilation, estimated from the emissions of back-to-back γ\gamma-photons. The optimisation of its parameters is studied using Monte Carlo simulations of a 1-mm spherical source, NEMA IEC and XCAT phantoms inside the ideal J-PET scanner. The combination of high-pass filters which included the TOF filtered back-projection (FBP), resulted in spatial resolution, 1.5 ×\times higher in the axial direction than for the conventional 3D FBP. For realistic 1010-minute scans of NEMA IEC and XCAT, which require a trade-off between the noise and spatial resolution, the need for Gaussian TOF kernel components, coupled with median post-filtering, is demonstrated. The best sets of 3D filter parameters were obtained by the Nelder-Mead minimisation of the mean squared error between the resulting and reference images. The approach allows training the reconstruction algorithm for custom scans, using the IEC phantom, when the temporal resolution is below 50 ps. The image quality parameters, estimated for the best outcomes, were systematically better than for the non-TOF FBP
    corecore