62 research outputs found

    Bifunctional Avidin with Covalently Modifiable Ligand Binding Site

    Get PDF
    The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (strept)avidin to improve the existing applications. Even so, (strept)avidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces

    Development of a Tetrameric Streptavidin Mutein with Reversible Biotin Binding Capability: Engineering a Mobile Loop as an Exit Door for Biotin

    Get PDF
    A novel form of tetrameric streptavidin has been engineered to have reversible biotin binding capability. In wild-type streptavidin, loop3–4 functions as a lid for the entry and exit of biotin. When biotin is bound, interactions between biotin and key residues in loop3–4 keep this lid in the closed state. In the engineered mutein, a second biotin exit door is created by changing the amino acid sequence of loop7–8. This door is mobile even in the presence of the bound biotin and can facilitate the release of biotin from the mutein. Since loop7–8 is involved in subunit interactions, alteration of this loop in the engineered mutein results in an 11° rotation between the two dimers in reference to wild-type streptavidin. The tetrameric state of the engineered mutein is stabilized by a H127C mutation, which leads to the formation of inter-subunit disulfide bonds. The biotin binding kinetic parameters (koff of 4.28×10−4 s−1 and Kd of 1.9×10−8 M) make this engineered mutein a superb affinity agent for the purification of biotinylated biomolecules. Affinity matrices can be regenerated using gentle procedures, and regenerated matrices can be reused at least ten times without any observable reduction in binding capacity. With the combination of both the engineered mutein and wild-type streptavidin, biotinylated biomolecules can easily be affinity purified to high purity and immobilized to desirable platforms without any leakage concerns. Other potential biotechnological applications, such as development of an automated high-throughput protein purification system, are feasible

    J. Mol. Biol.

    No full text
    Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level. (C) 2002 Elsevier Science Ltd. All rights reserved

    Structural basis of the adaptive molecular recognition by MMP9

    No full text
    Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level. (C) 2002 Elsevier Science Ltd. All rights reserved

    J. Biol. Chem.

    No full text

    FEBS Lett.

    No full text
    We examined the influence of Ser/Ala190 in the S1 site on P1 substrate selectivity in several serine proteases. The impact of residue 190 on the selectivity was constant, regardless of differences in original selectivity or reactivity. Substrate binding in S1 was optimised in all wild-type enzymes, while the effects on k(cat) depended on the combination of residue 190 and substrate. Mutagenesis of residue 190 did not affect the S2-S4 sites. Pronounced selectivity for arginine residues was coupled with low enzymatic activity, in particular in recombinant factor IXa. This is due to the dominance of the S1- P1 interaction over substrate binding in the S2-S4 sites. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies

    Physiological fIXa activation involves a cooperative conformational rearrangement of the 99-loop

    No full text
    Coagulation factor IXa (fIXa) plays a central role in the coagulation cascade. Enzymatically, fIXa is characterized by its very low amidolytic activity that is not improved in the presence of cofactor, factor VIIIa (fVIIIa), distinguishing fIXa from all other coagulation factors. Activation of the fIXa-fVIIIa complex requires its macromolecular substrate, factor X (fX). The 99-loop positioned near the active site partly accounts for the poor activity of fIXa because it adopts a conformation that interferes with canonical substrate binding in S2-S4. Here we show that residues Lys-98 and Tyr-99 are critically linked to the amidolytic properties of fIXa. Exchange of Tyr-99 with smaller residues resulted not only in an overall decreased activity but also in impaired binding in S1. Replacement of Lys-98 with smaller and uncharged residues increased activity. Simultaneous mutagenesis of Lys-98, Tyr-177, and Tyr-94 produced an enzyme with 7000-fold increased activity and altered specificity. This triple mutant probably mimics the conformational changes that are physiologically induced by cofactor and substrate binding. It therefore provides a cooperative two-step activation model for fIXa. Tyr-177 locks the 99-loop in an inactive conformation which, in the physiologic complex, is released by cofactor fVIIIa. FX is then able to rearrange the unlocked 99-loop and subsequently binds to the active site cleft

    The influence of residue 190 in the S1 site of trypsin-like serine proteases on substrate selectivity is universally conserved

    No full text
    We examined the influence of Ser/Ala190 in the S1 site on P1 substrate selectivity in several serine proteases. The impact of residue 190 on the selectivity was constant, regardless of differences in original selectivity or reactivity. Substrate binding in S1 was optimised in all wild-type enzymes, while the effects on k(cat) depended on the combination of residue 190 and substrate. Mutagenesis of residue 190 did not affect the S2-S4 sites. Pronounced selectivity for arginine residues was coupled with low enzymatic activity, in particular in recombinant factor IXa. This is due to the dominance of the S1- P1 interaction over substrate binding in the S2-S4 sites. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies

    J. Mol. Biol.

    No full text
    Factor VIIa initiates the extrinsic coagulation cascade; this event requires a delicately balanced regulation that is implemented on different levels, including a sophisticated multi-step activation mechanism of factor VII. Its central role in hemostasis and thrombosis makes factor VIIa a key target of pharmaceutical research. We succeeded, for the first time, in recombinantly producing N-terminally truncated factor VII (rf7) in an Escherichia coli expression system by employing an oxidative, in vitro, folding protocol, which depends critically on the presence of ethylene glycol. Activated recombinant factor VIIa (rf7a) was crystallised in the presence of the reversible S1-site inhibitor benzamidine. Comparison of this 1.69 Angstrom crystal structure with that of an inhibitor-free and sulphate-free, but isomorphous crystal form identified structural details of factor VIIa stimulation. The stabilisation of Asp189-Ser190 by benzamidine and the capping of the intermediate helix by a sulphate ion appear to be sufficient to mimic the disorder-order transition conferred by the cofactor tissue factor (TF) and the substrate factor X. Factor VIIa shares with the homologous factor IXa, but not factor Xa, a bell-shaped activity modulation dependent on ethylene glycol. The ethylene glycol-binding site of rf7a was identified in the vicinity of the 60 loop. Ethylene glycol binding induces a significant conformational rearrangement of the 60 loop. This region serves as a recognition site of the physiologic substrate, factor X, which is common to both factor VIIa and factor IXa. These results provide a mechanistic framework of substrate-assisted catalysis of both factor VIIa and factor IXa. (C) 2002 Elsevier Science Ltd. All rights reserved

    Crystal structures of uninhibited factor VIIa link its cofactor and substrate-assisted activation to specific interactions

    Get PDF
    Factor VIIa initiates the extrinsic coagulation cascade; this event requires a delicately balanced regulation that is implemented on different levels, including a sophisticated multi-step activation mechanism of factor VII. Its central role in hemostasis and thrombosis makes factor VIIa a key target of pharmaceutical research. We succeeded, for the first time, in recombinantly producing N-terminally truncated factor VII (rf7) in an Escherichia coli expression system by employing an oxidative, in vitro, folding protocol, which depends critically on the presence of ethylene glycol. Activated recombinant factor VIIa (rf7a) was crystallised in the presence of the reversible S1-site inhibitor benzamidine. Comparison of this 1.69 Angstrom crystal structure with that of an inhibitor-free and sulphate-free, but isomorphous crystal form identified structural details of factor VIIa stimulation. The stabilisation of Asp189-Ser190 by benzamidine and the capping of the intermediate helix by a sulphate ion appear to be sufficient to mimic the disorder-order transition conferred by the cofactor tissue factor (TF) and the substrate factor X. Factor VIIa shares with the homologous factor IXa, but not factor Xa, a bell-shaped activity modulation dependent on ethylene glycol. The ethylene glycol-binding site of rf7a was identified in the vicinity of the 60 loop. Ethylene glycol binding induces a significant conformational rearrangement of the 60 loop. This region serves as a recognition site of the physiologic substrate, factor X, which is common to both factor VIIa and factor IXa. These results provide a mechanistic framework of substrate-assisted catalysis of both factor VIIa and factor IXa. (C) 2002 Elsevier Science Ltd. All rights reserved
    • …
    corecore