282 research outputs found

    Wood ash from bioenergy systems as a soil amendment for crop production

    Get PDF
    Paper presented at the 11th North American Agroforesty Conference, which was held May 31-June 3, 2009 in Columbia, Missouri.In Gold, M.A. and M.M. Hall, eds. Agroforestry Comes of Age: Putting Science into Practice. Proceedings, 11th North American Agroforestry Conference, Columbia, Mo., May 31-June 3, 2009.Wood is a renewable energy source that can be practical for many applications. Wood ash produced as a byproduct of commercial, industrial, and institutional bioenergy operations can be an economical, effective, and environmentally friendly soil amendment for crop production. Wood ash provides liming benefits along with potassium, phosphorus, calcium, magnesium, and micronutrients. Research in Wisconsin has demonstrated that wood ash benefits a variety of agronomic crops and can be practical for farmers to use. We conducted greenhouse and field studies to evaluate the effects of landspreading industrial wood ash on the yield and elemental composition of forage crops and on soil nutrient levels. Biomass yields generally increased with ash application up to 20 tons/acre and decreased at applications exceeding this level (Meyers and Kopecky, 1998). Wood ash application usually produced yields greater than those obtained with the limed and fertilized control treatment. No undesirable elements accumulated in forage tissue at ash application rates up to 20 tons/acre. Clean wood ash (produced from only wood and bark without synthetic substances in the fuel stream) is permitted for organic crop production systems in the United States. It is especially valuable in areas with acidic soils, and can be landspread with equipment that is commonly used in cropping systems. Wood ash is already being used as a soil amendment in some areas of North America, but in other cases it is disposed of in landfills. Using wood ash for crop production can save money for farmers and bioenergy users and is a more sustainable stewardship practice.Mark J. Kopecky (1) and N. Larry Meyers (2) ; 1. Department of Agriculture and Agribusiness, University of Wisconsin-Extension, Price County UW-Extension, 104 South Eyder Avenue, Phillips WI (USA) 54555. 2. Professor Emeritus, Department of Plant and Earth Science, University of Wisconsin-River Falls, River Falls WI (USA) 54022.Includes bibliographical references

    From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

    Full text link
    The nuclear research and development community has a history of using both integral and differential experiments to support accurate lattice-reactor, nuclear reactor criticality and shielding simulations, as well as verification and validation efforts of cross sections and emitted particle spectra. An important aspect to this type of analysis is the proper consideration of the contribution of the neutron spectrum in its entirety, with correct propagation of uncertainties and standard deviations derived from Monte Carlo simulations, to the local and total uncertainty in the simulated reactions rates (RRs), which usually only apply to one application at a time. This paper identifies deficiencies in the traditional treatment, and discusses correct handling of the RR uncertainty quantification and propagation, including details of the cross section components in the RR uncertainty estimates, which are verified for relevant applications. The methodology that rigorously captures the spectral shift and cross section contributions to the uncertainty in the RR are discussed with quantified examples that demonstrate the importance of the proper treatment of the spectrum profile and cross section contributions to the uncertainty in the RR and subsequent response functions. The recently developed inventory code FISPACT-II, when connected to the processed nuclear data libraries TENDL-2015, ENDF/B-VII.1, JENDL-4.0u or JEFF-3.2, forms an enhanced multi-physics platform providing a wide variety of advanced simulation methods for modelling activation, transmutation, burnup protocols and simulating radiation damage sources terms. The system has extended cutting-edge nuclear data forms, uncertainty quantification and propagation methods, which have been the subject of recent integral and differential, fission, fusion and accelerators validation efforts. The simulation system is used to accurately and predictively probe, understand and underpin a modern and sustainable understanding of the nuclear physics that is so important for many areas of science and technology; advanced fission and fuel systems, magnetic and inertial confinement fusion, high energy, accelerator physics, medical application, isotope production, earth exploration, astrophysics and homeland security

    The relationship between dark triad personality traits and sexting behaviors among adolescents and young adults across 11 countries

    Get PDF
    Background: Sexting is an increasingly common phenomenon among adolescents and young adults. Some studies have investigated the role of personality traits in different sexting behaviors within mainstream personality taxonomies like Big Five and HEXACO. However, very few studies have investigated the role of maladaptive personality factors in sexting. Therefore, the present study investigated the relationship between Dark Triad Personality Traits and experimental (i.e., sharing own sexts), risky (i.e., sexting under substance use and with strangers), and aggravated sexting (i.e., non-consensual sexting and sexting under pressure) across 11 countries. Methods: An online survey was completed by 6093 participants (Mage = 20.35; SDage = 3.63) from 11 different countries which covered four continents (Europe, Asia, Africa, and America). Participants completed the Sexting Behaviors Questionnaire and the 12-item Dark Triad Dirty Dozen scale. Results: Hierarchical regression analyses showed that sharing own sexts was positively predicted by Machiavellianism and Narcissism. Both risky and aggravated sexting were positively predicted by Machiavellianism and Psychopathy. Conclusions: The present study provided empirical evidence that different sexting behaviors were predicted by Dark Triad Personality Traits, showing a relevant role of Machiavellian-ism in all kinds of investigated sexting behaviors. Research, clinical, and education implications for prevention programs are discussed

    Vesicular Stomatitis Virus-Based Ebola Vaccine Is Well-Tolerated and Protects Immunocompromised Nonhuman Primates

    Get PDF
    Ebola virus (EBOV) is a significant human pathogen that presents a public health concern as an emerging/re-emerging virus and as a potential biological weapon. Substantial progress has been made over the last decade in developing candidate preventive vaccines that can protect nonhuman primates against EBOV. Among these prospects, a vaccine based on recombinant vesicular stomatitis virus (VSV) is particularly robust, as it can also confer protection when administered as a postexposure treatment. A concern that has been raised regarding the replication-competent VSV vectors that express EBOV glycoproteins is how these vectors would be tolerated by individuals with altered or compromised immune systems such as patients infected with HIV. This is especially important as all EBOV outbreaks to date have occurred in areas of Central and Western Africa with high HIV incidence rates in the population. In order to address this concern, we evaluated the safety of the recombinant VSV vector expressing the Zaire ebolavirus glycoprotein (VSVΞ”G/ZEBOVGP) in six rhesus macaques infected with simian-human immunodeficiency virus (SHIV). All six animals showed no evidence of illness associated with the VSVΞ”G/ZEBOVGP vaccine, suggesting that this vaccine may be safe in immunocompromised populations. While one goal of the study was to evaluate the safety of the candidate vaccine platform, it was also of interest to determine if altered immune status would affect vaccine efficacy. The vaccine protected 4 of 6 SHIV-infected macaques from death following ZEBOV challenge. Evaluation of CD4+ T cells in all animals showed that the animals that succumbed to lethal ZEBOV challenge had the lowest CD4+ counts, suggesting that CD4+ T cells may play a role in mediating protection against ZEBOV

    Energy dependence of fission product yields from 235

    Full text link
    Under a joint collaboration between TUNL-LANL-LLNL, a set of absolute fission product yield measurements has been performed. The energy dependence of a number of cumulative fission product yields (FPY) have been measured using quasi-monoenergetic neutron beams for three actinide targets, 235U, 238U and 239Pu, between 0.5 and 14.8 MeV. The FPYs were measured by a combination of fission counting using specially designed dual-fission chambers and Ξ³-ray counting. Each dual-fission chamber is a back-to-back ionization chamber encasing an activation target in the center with thin deposits of the same target isotope in each chamber. This method allows for the direct measurement of the total number of fissions in the activation target with no reference to the fission cross-section, thus reducing uncertainties. Ξ³-ray counting of the activation target was performed on well-shielded HPGe detectors over a period of two months post irradiation to properly identify fission products. Reported are absolute cumulative fission product yields for incident neutron energies of 0.5, 1.37, 2.4, 3.6, 4.6, 5.5, 7.5, 8.9 and 14.8 MeV. Preliminary results from thermal irradiations at the MIT research reactor will also be presented and compared to present data and evaluations. This work was performed under the auspices of the U.S. Department of Energy by Los Alamos National Security, LLC under contract DE-AC52-06NA25396, Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344 and by Duke University and Triangle Universities Nuclear Laboratory through NNSA Stewardship Science Academic Alliance grant No. DE-FG52-09NA29465, DE-FG52-09NA29448 and Office of Nuclear Physics Grant No. DE-FG02-97ER41033

    Coronavirus Papain-like Proteases Negatively Regulate Antiviral Innate Immune Response through Disruption of STING-Mediated Signaling

    Get PDF
    Viruses have evolved elaborate mechanisms to evade or inactivate the complex system of sensors and signaling molecules that make up the host innate immune response. Here we show that human coronavirus (HCoV) NL63 and severe acute respiratory syndrome (SARS) CoV papain-like proteases (PLP) antagonize innate immune signaling mediated by STING (stimulator of interferon genes, also known as MITA/ERIS/MYPS). STING resides in the endoplasmic reticulum and upon activation, forms dimers which assemble with MAVS, TBK-1 and IKKΞ΅, leading to IRF-3 activation and subsequent induction of interferon (IFN). We found that expression of the membrane anchored PLP domain from human HCoV-NL63 (PLP2-TM) or SARS-CoV (PLpro-TM) inhibits STING-mediated activation of IRF-3 nuclear translocation and induction of IRF-3 dependent promoters. Both catalytically active and inactive forms of CoV PLPs co-immunoprecipitated with STING, and viral replicase proteins co-localize with STING in HCoV-NL63-infected cells. Ectopic expression of catalytically active PLP2-TM blocks STING dimer formation and negatively regulates assembly of STING-MAVS-TBK1/IKKΞ΅ complexes required for activation of IRF-3. STING dimerization was also substantially reduced in cells infected with SARS-CoV. Furthermore, the level of ubiquitinated forms of STING, RIG-I, TBK1 and IRF-3 are reduced in cells expressing wild type or catalytic mutants of PLP2-TM, likely contributing to disruption of signaling required for IFN induction. These results describe a new mechanism used by CoVs in which CoV PLPs negatively regulate antiviral defenses by disrupting the STING-mediated IFN induction

    SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism

    Get PDF
    Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1βˆ’/βˆ’ mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1βˆ’/βˆ’ mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation

    IAEA coordinated research project on nuclear data for charged-particle monitor reactions and medical isotope production

    Full text link
    An IAEA coordinated research project was launched in December 2012 to establish and improve the nuclear data required to characterise charged-particle monitor reactions and extend data for medical radionuclide production. An international team was assembled to undertake work addressing the requirements for more accurate cross-section data over a wide range of targets and projectiles, undertaken in conjunction with a limited number of measurements and more extensive evaluations of the decay data of specific radionuclides. These studies are nearing completion, and are briefly described below
    • …
    corecore