60 research outputs found

    Математичне програмування

    Get PDF
    Викладено основи математичного програмування - науки, що займається оптимізаційними методами, які слугують кількісним обґрунтуванням оптимальних управлінських рішень в економіці. Розглянуто основні поняття і методологічні принципи математичного програмування, математичні методи оптимізації (лінійне, дробово-лінійне, цілочислове, нелінійне, динамічне програмування). Матеріал викладено на порівняно елементарному рівні, доступно- му студентам, які знайомі з курсом математики для економістів. Методи, що розглядаються в посібнику, ілюструються великою кількістю прикладів. Посібник має на меті навчити студентів застосовувати математику та обчислювальну техніку для обґрунтування оптимальних економічних рішен

    The hibernation-derived compound SUL-138 shifts the mitochondrial proteome towards fatty acid metabolism and prevents cognitive decline and amyloid plaque formation in an Alzheimer’s disease mouse model

    Get PDF
    Background: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide and remains without effective cure. Increasing evidence is supporting the mitochondrial cascade hypothesis, proposing that loss of mitochondrial fitness and subsequent ROS and ATP imbalance are important contributors to AD pathophysiology. Methods: Here, we tested the effects of SUL-138, a small hibernation-derived molecule that supports mitochondrial bioenergetics via complex I/IV activation, on molecular, physiological, behavioral, and pathological outcomes in APP/PS1 and wildtype mice. Results: SUL-138 treatment rescued long-term potentiation and hippocampal memory impairments and decreased beta-amyloid plaque load in APP/PS1 mice. This was paralleled by a partial rescue of dysregulated protein expression in APP/PS1 mice as assessed by mass spectrometry-based proteomics. In-depth analysis of protein expression revealed a prominent effect of SUL-138 in APP/PS1 mice on mitochondrial protein expression. SUL-138 increased the levels of proteins involved in fatty acid metabolism in both wildtype and APP/PS1 mice. Additionally, in APP/PS1 mice only, SUL-138 increased the levels of proteins involved in glycolysis and amino acid metabolism pathways, indicating that SUL-138 rescues mitochondrial impairments that are typically observed in AD. Conclusion: Our study demonstrates a SUL-138-induced shift in metabolic input towards the electron transport chain in synaptic mitochondria, coinciding with increased synaptic plasticity and memory. In conclusion, targeting mitochondrial bioenergetics might provide a promising new way to treat cognitive impairments in AD and reduce disease progression

    iHIVARNA phase IIa, a randomized, placebo-controlled, double-blinded trial to evaluate the safety and immunogenicity of iHIVARNA-01 in chronically HIV-infected patients under stable combined antiretroviral therapy

    Get PDF
    Background: HIV therapeutic vaccination aims to improve the immune responses against HIV in order to control viral replication without the need for combined antiretroviral therapy (cART). iHIVARNA-01 is a novel vaccine combining mRNA delivery and T-cell immunogen (HTI) based on conserved targets of effective antiviral T-cell responses. In addition, it holds adequate stimuli required for activating antigen presenting cells (APC)s and co-activating specific T-cells (TriMix), including human CD40L, constitutively active TLR4 (caTLR4) and CD70. We propose that in-vivo targeting of dendritic cells (DCs) by direct administration of a HIV mRNA encoding these immune modulating proteins might be an attractive alternative to target DCs in vitro. Methods/design: This is a phase-IIa, randomized, double-blinded, placebo-controlled, multicenter study in chronically HIV-1 infected patients under stable cART. One of the three study arms is randomly allocated to subjects. Three vaccinations with either HIVACAT T-cell immunogen (HTI)-TriMix (iHIVARNA-01), TriMix or water for injection (WFI) (weeks 0, 2 and 4) are administered by intranodal injection in the inguinal region. Two weeks after the last immunization (week 6) cART is stopped for 12 weeks. The two primary endpoints are: (1) safety and tolerability of intranodal iHIVARNA-01 vaccination compared with TriMix or WFI and (2) induced immunogenicity, i.e., increase in the frequency of HIV-specific T-cell responses between baseline, week 6 and 12 weeks after treatment interruption in iHIVARNA-01-treated patients as compared to the control groups, immunized with TriMix-mRNA or WFI measured by an IFNγ ELISPOT assay. Secondary endpoints include the evaluation of time to viral rebound, plasma viral load (pVL) at w18, the proportion of patients with control of viral load, induction of T-cell responses to new HIV epitopes, polyfunctionality of HIV-specific T-cells, CD8+ T-cell in-vitro HIV suppressive capacity, the effect on viral reservoir (measured by proviral DNA and cell-associated RNA), assessment of viral immune escape by mutation and mRNA expression profiles of host immune genes. Discussion: This trial aims to direct target DC in situ with mRNA encoding HTI and TriMix for co-stimulation. Intranodal injection circumvents laborious DC isolation and handling in the laboratory. The trial extends on the safety results of a phase-I dose-escalating trial. This candidate vaccine could complement or even replace cART for chronic HIV infection and could be applicable to improve the care and cost of HIV infection

    Prognostication using SpO(2)/FiO(2) in invasively ventilated ICU patients with ARDS due to COVID-19-Insights from the PRoVENT-COVID study

    Get PDF
    Background: The SpO(2)/FiO(2) is a useful oxygenation parameter with prognostic capacity in patients with ARDS. We investigated the prognostic capacity of SpO(2)/FiO(2) for mortality in patients with ARDS due to COVID-19. Methods: This was a post-hoc analysis of a national multicenter cohort study in invasively ventilated patients with ARDS due to COVID-19. The primary endpoint was 28-day mortality. Results: In 869 invasively ventilated patients, 28-day mortality was 30.1%. The SpO(2)/FiO(2) on day 1 had no prognostic value. The SpO(2)/FiO(2) on day 2 and day 3 had prognostic capacity for death, with the best cut-offs being 179 and 199, respectively. Both SpO(2)/FiO(2) on day 2 (OR, 0.66 [95%-CI 0.46-0.96]) and on day 3 (OR, 0.70 [95%-CI 0.51-0.96]) were associated with 28-day mortality in a model corrected for age, pH, lactate levels and kidney dysfunction (AUROC 0.78 [0.76-0.79]). The measured PaO2/FiO(2) and the PaO2/FiO(2) calculated from SpO(2)/FiO(2) were strongly correlated (Spearman's r = 0.79). Conclusions: In this cohort of patients with ARDS due to COVID-19, the SpO(2)/FiO(2) on day 2 and day 3 are independently associated with and have prognostic capacity for 28-day mortality. The SpO(2)/FiO(2) is a useful metric for risk stratification in invasively ventilated COVID-19 patients. (C) 2021 The Authors. Published by Elsevier Inc

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Regeneration of descending axon tracts after spinal cord injury.

    No full text
    Axons within the adult mammalian central nervous system do not regenerate spontaneously after injury. Upon injury, the balance between growth promoting and growth inhibitory factors in the central nervous system dramatically changes resulting in the absence of regeneration. Axonal responses to injury vary considerably. In central nervous system regeneration studies, the spinal cord has received a lot of attention because of its relatively easy accessibility and its clinical relevance. The present review discusses the axon-tract-specific requirements for regeneration in the rat. This knowledge is very important for the development and optimalization of therapies to repair the injured spinal cord

    Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps

    Full text link
    Regrowth of injured axons across rather small spinal cord lesion gaps and subsequent functional recovery has been obtained after many interventions. Long-distance regeneration of injured axons across clinically relevant large spinal lesion gaps is relatively unexplored. Here, we aimed at stimulating long-distance regrowth of the injured corticospinal (CS) tract. During development, an oriented framework of immature astrocytes is important for correct CS axon outgrowth. Furthermore, a continuous growth promoting substrate may be needed to maintain a CS axon regrowth response across relatively large spinal lesion gaps. Hence, we acutely transplanted poly(D,L)-lactide matrices, which after seeded with immature astrocytes render aligned astrocyte-biomatrix complexes (R. Deumens, et al. Alignment of glial cells stimulates directional neurite growth of CNS neurons in vitro. Neuroscience 125 (3) (2004) 591-604), into 2-mm long dorsal hemisection lesion gaps. In order to create a growth promoting continuum, astrocyte suspensions were also injected rostral and caudal to the lesion gap. During 2 months, locomotion was continuously monitored. Histological analysis showed that astrocytes injected into host spinal tissue survived, but did not migrate. None of the astrocytes on the biomatrices survived within the lesion gap. BDA-labeled CS axons did not penetrate the graft. However, directly rostral to the lesion gap, 120.9 +/- 38.5% of the BDA-labeled CS axons were present in contrast to 12.8 +/- 3.9% in untreated control animals. The observed anatomical changes were not accompanied by locomotor improvements as analyzed with the BBB and CatWalk. We conclude that although multifactorial strategies may be needed to stimulate long-distance CS axon regrowth, future studies should focus on enhancing the viability of cell/biomatrix complexes within large spinal lesion gaps
    corecore