1,088 research outputs found

    Equiangular lines in Euclidean spaces

    Full text link
    We obtain several new results contributing to the theory of real equiangular line systems. Among other things, we present a new general lower bound on the maximum number of equiangular lines in d dimensional Euclidean space; we describe the two-graphs on 12 vertices; and we investigate Seidel matrices with exactly three distinct eigenvalues. As a result, we improve on two long-standing upper bounds regarding the maximum number of equiangular lines in dimensions d=14, and d=16. Additionally, we prove the nonexistence of certain regular graphs with four eigenvalues, and correct some tables from the literature.Comment: 24 pages, to appear in JCTA. Corrected an entry in Table

    Characterizing Block Graphs in Terms of their Vertex-Induced Partitions

    Full text link
    Given a finite connected simple graph G=(V,E)G=(V,E) with vertex set VV and edge set E⊆(V2)E\subseteq \binom{V}{2}, we will show that 1.1. the (necessarily unique) smallest block graph with vertex set VV whose edge set contains EE is uniquely determined by the VV-indexed family PG:=(π0(G(v)))v∈V{\bf P}_G:=\big(\pi_0(G^{(v)})\big)_{v \in V} of the various partitions π0(G(v))\pi_0(G^{(v)}) of the set VV into the set of connected components of the graph G(v):=(V,{e∈E:v∉e})G^{(v)}:=(V,\{e\in E: v\notin e\}), 2.2. the edge set of this block graph coincides with set of all 22-subsets {u,v}\{u,v\} of VV for which uu and vv are, for all w∈V−{u,v}w\in V-\{u,v\}, contained in the same connected component of G(w)G^{(w)}, 3.3. and an arbitrary VV-indexed family Pp=(pv)v∈V{\bf P}p=({\bf p}_v)_{v \in V} of partitions πv\pi_v of the set VV is of the form Pp=PpG{\bf P}p={\bf P}p_G for some connected simple graph G=(V,E)G=(V,E) with vertex set VV as above if and only if, for any two distinct elements u,v∈Vu,v\in V, the union of the set in pv{\bf p}_v that contains uu and the set in pu{\bf p}_u that contains vv coincides with the set VV, and {v}∈pv\{v\}\in {\bf p}_v holds for all v∈Vv \in V. As well as being of inherent interest to the theory of block graphs, these facts are also useful in the analysis of compatible decompositions and block realizations of finite metric spaces

    Characterizing block graphs in terms of their vertex-induced partitions

    Get PDF
    Block graphs are a generalization of trees that arise in areas such as metric graph theory, molecular graphs, and phylogenetics. Given a finite connected simple graph G=(V,E)G=(V,E) with vertex set VV and edge set E⊆(V2)E\subseteq \binom{V}{2}, we will show that the (necessarily unique) smallest block graph with vertex set VV whose edge set contains EE is uniquely determined by the VV-indexed family \Pp_G =\big(\pi_v)_{v \in V} of the partitions πv\pi_v of the set VV into the set of connected components of the graph (V,{e∈E:v∉e})(V,\{e\in E: v\notin e\}). Moreover, we show that an arbitrary VV-indexed family \Pp=(\p_v)_{v \in V} of partitions \p_v of the set VV is of the form \Pp=\Pp_G for some connected simple graph G=(V,E)G=(V,E) with vertex set VV as above if and only if, for any two distinct elements u,v∈Vu,v\in V, the union of the set in \p_v that contains uu and the set in \p_u that contains vv coincides with the set VV, and \{v\}\in \p_v holds for all v∈Vv \in V. As well as being of inherent interest to the theory of block graphs,these facts are also useful in the analysis of compatible decompositions of finite metric spaces
    • …
    corecore