5,740 research outputs found

    Biofilm Matrixome: Extracellular Components in Structured Microbial Communities

    Full text link
    Biofilms consist of microbial communities embedded in a 3D extracellular matrix. The matrix is composed of a complex array of extracellular polymeric substances (EPS) that contribute to the unique attributes of biofilm lifestyle and virulence. This ensemble of chemically and functionally diverse biomolecules is termed the 'matrixome'. The composition and mechanisms of EPS matrix formation, and its role in biofilm biology, function, and microenvironment are being revealed. This perspective article highlights recent advances about the multifaceted role of the 'matrixome' in the development, physical-chemical properties, and virulence of biofilms. We emphasize that targeting biofilm-specific conditions such as the matrixome could lead to precise and effective antibiofilm approaches. We also discuss the limited knowledge in the context of polymicrobial biofilms, and the need for more in-depth analyses of the EPS matrix in mixed communities that are associated with many human infectious diseases. Keywords: extracellular matrix; extracellular polymeric substances (EPSs); microenvironments; polymicrobial biofilm; spatial organization; virulence

    Refined Simulations of the Reaction Front for Diffusion-Limited Two-Species Annihilation in One Dimension

    Full text link
    Extensive simulations are performed of the diffusion-limited reaction A++B0\to 0 in one dimension, with initially separated reagents. The reaction rate profile, and the probability distributions of the separation and midpoint of the nearest-neighbour pair of A and B particles, are all shown to exhibit dynamic scaling, independently of the presence of fluctuations in the initial state and of an exclusion principle in the model. The data is consistent with all lengthscales behaving as t1/4t^{1/4} as tt\to\infty. Evidence of multiscaling, found by other authors, is discussed in the light of these findings.Comment: Resubmitted as TeX rather than Postscript file. RevTeX version 3.0, 10 pages with 16 Encapsulated Postscript figures (need epsf). University of Geneva preprint UGVA/DPT 1994/10-85

    Evidence for Ubiquitous Collimated Galactic-Scale Outflows along the Star-Forming Sequence at z~0.5

    Full text link
    We present an analysis of the MgII 2796, 2803 and FeII 2586, 2600 absorption line profiles in individual spectra of 105 galaxies at 0.3<z<1.4. The galaxies, drawn from redshift surveys of the GOODS fields and the Extended Groth Strip, fully sample the range in star formation rates (SFRs) occupied by the star-forming sequence with stellar masses log M_*/M_sun > 9.5 at 0.3<z<0.7. Using the Doppler shifts of the MgII and FeII absorption lines as tracers of cool gas kinematics, we detect large-scale winds in 66+/-5% of the galaxies. HST/ACS imaging and our spectral analysis indicate that the outflow detection rate depends primarily on galaxy orientation: winds are detected in ~89% of galaxies having inclinations (i) <30 degrees (face-on), while the wind detection rate is only ~45% in objects having i>50 degrees (edge-on). Combined with the comparatively weak dependence of the wind detection rate on intrinsic galaxy properties, this suggests that biconical outflows are ubiquitous in normal, star-forming galaxies at z~0.5. We find that the wind velocity is correlated with host galaxy M_* at 3.4-sigma significance, while the equivalent width of the flow is correlated with host galaxy SFR at 3.5-sigma significance, suggesting that hosts with higher SFR may launch more material into outflows and/or generate a larger velocity spread for the absorbing clouds. Assuming that the gas is launched into dark matter halos with simple, isothermal density profiles, the wind velocities measured for the bulk of the cool material (~200-400 km/s) are sufficient to enable escape from the halo potentials only for the lowest-M_* systems in the sample. However, the outflows typically carry sufficient energy to reach distances of >50 kpc, and may therefore be a viable source of cool material for the massive circumgalactic medium observed around bright galaxies at z~0. [abridged]Comment: Submitted to ApJ. 61 pages, 25 figures, 4 tables, 4 appendices. Uses emulateapj forma

    Diffusion-Limited Annihilation with Initially Separated Reactants

    Full text link
    A diffusion-limited annihilation process, A+B->0, with species initially separated in space is investigated. A heuristic argument suggests the form of the reaction rate in dimensions less or equal to the upper critical dimension dc=2d_c=2. Using this reaction rate we find that the width of the reaction front grows as t1/4t^{1/4} in one dimension and as t1/6(lnt)1/3t^{1/6}(\ln t)^{1/3} in two dimensions.Comment: 9 pages, Plain Te
    corecore