119 research outputs found

    Experimental Analysis of Sandstone and Travertine

    Get PDF
    Sandstone and travertine are sedimentary rocks. The former is clastic, while the latter is sourced by chemical precipitation from hot springs. Their applications in civil engineering structures are mostly influenced by the ability to carry compression loading. A three-point bending experiment is usually used to determine material characteristics. However it does not correspond very well to applicatiosn in structures. For this reason we used a uniaxial compression test to obtain the modulus of elasticity and the stress-strain diagram. To obtain detailed information about the crystalline structure of sandstone and travertine a microscopic analysis wascarried out, using optical microscopy and an EDAX multichannel spectrometer for elementary microanalysis.

    Oxytocin improves synchronisation in leader-follower interaction

    Get PDF
    The neuropeptide oxytocin has been shown to affect social interaction. Meanwhile, the underlying mechanism remains highly debated. Using an interpersonal finger-tapping paradigm, we investigated whether oxytocin affects the ability to synchronise with and adapt to the behaviour of others. Dyads received either oxytocin or a non-active placebo, intranasally. We show that in conditions where one dyad-member was tapping to another unresponsive dyad-member – i.e. one was following another who was leading/self-pacing – dyads given oxytocin were more synchronised than dyads given placebo. However, there was no effect when following a regular metronome or when both tappers were mutually adapting to each other. Furthermore, relative to their self-paced tapping partners, oxytocin followers were less variable than placebo followers. Our data suggests that oxytocin improves synchronisation to an unresponsive partner’s behaviour through a reduction in tapping-variability. Hence, oxytocin may facilitate social interaction by enhancing sensorimotor predictions supporting interpersonal synchronisation. The study thus provides novel perspectives on how neurobiological processes relate to socio-psychological behaviour and contributes to the growing evidence that synchronisation and prediction are central to social cognition

    Manin matrices and Talalaev's formula

    Full text link
    We study special class of matrices with noncommutative entries and demonstrate their various applications in integrable systems theory. They appeared in Yu. Manin's works in 87-92 as linear homomorphisms between polynomial rings; more explicitly they read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}]=[M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11}, M_{22}]=[M_{21}, M_{12}]). We claim that such matrices behave almost as well as matrices with commutative elements. Namely theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) holds true for them. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation "RTT=TTR" and the so--called Cartier-Foata matrices. Also, they enter Talalaev's hep-th/0404153 remarkable formulas: det(zLGaudin(z))det(\partial_z-L_{Gaudin}(z)), det(1-e^{-\p}T_{Yangian}(z)) for the "quantum spectral curve", etc. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g in the construction of new generators in Z(U(gln^))Z(U(\hat{gl_n})) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We also discuss applications to the separation of variables problem, new Capelli identities and the Langlands correspondence.Comment: 40 pages, V2: exposition reorganized, some proofs added, misprints e.g. in Newton id-s fixed, normal ordering convention turned to standard one, refs. adde

    Effect of Protein Kinase Cβ Inhibition on Renal Hemodynamic Function and Urinary Biomarkers in Humans With Type 1 Diabetes: A Pilot Study

    Get PDF
    OBJECTIVE—The aim of this study was to examine the effect of protein kinase Cβ inhibition with ruboxistaurin on renal hemodynamic function and urinary biomarkers (monocyte chemoattractant protein-1 [MCP-1] and epidermal growth factor) in renin angiotensin system blockade-treated type 1 diabetic subjects

    The human diabetes proteome project (HDPP): The 2014 update

    Get PDF
    Diabetes is an increasing worldwide problem leading to major associated health issues and increased health care costs. In 2012, 9.3% of the American population was affected by diabetes, according to the American Diabetes Association, with 1.7 million of new cases since during the year (www.diabetes.org). Proteome initiatives can provide a deeper understanding of the biology of this disease and help develop more effective treatments. The collaborative effort of the Human Diabetes Proteome Project (HDPP) brings together a wide variety of complementary resources to increase the existing knowledge about both type 1 and type 2 diabetes and their related complications. The goals are to identify proteins and protein isoforms associated with the pathology and to characterize underlying disease-related pathways and mechanisms. Moreover, a considerable effort is being made on data integration and network biology. Sharing these data with the scientific community will be an important part of the consortium. Here we report on: the content of the HDPP session held at the 12th HUPO meeting in Yokohama; recent achievements of the consortium; discussions of several HDPP workshops; as well as future HDPP directions as discussed at the 13th HUPO congress in Madrid, with a special attention given to the lists of prioritized, diabetes-related proteins and the proteomic means to study them.</p

    Cooperation for public goods under uncertainty

    Full text link
    Everyone wants clean air, peace and other public goods but is tempted to freeride on others' efforts. The usual way out of this dilemma is to impose norms, maintain reputations and incentivize individuals to contribute. In situations of high uncertainty, however, such as confrontations of protesters with a dictatorial regime, the usual measures are not feasible, but cooperation can be achieved nevertheless. We use an Ising model with asymmetric spins that represent cooperation and defection to show numerically how public goods can be realized. Under uncertainty, people use the heuristic of conformity. The turmoil of a confrontation causes some individuals to cooperate accidentally, and at a critical level of turmoil, they entail a cascade of cooperation. This critical level is much lower in small networks

    Making oneself predictable: reduced temporal variability facilitates joint action coordination

    Get PDF
    Performing joint actions often requires precise temporal coordination of individual actions. The present study investigated how people coordinate their actions at discrete points in time when continuous or rhythmic information about others’ actions is not available. In particular, we tested the hypothesis that making oneself predictable is used as a coordination strategy. Pairs of participants were instructed to coordinate key presses in a two-choice reaction time task, either responding in synchrony (Experiments 1 and 2) or in close temporal succession (Experiment 3). Across all experiments, we found that coactors reduced the variability of their actions in the joint context compared with the same task performed individually. Correlation analyses indicated that the less variable the actions were, the better was interpersonal coordination. The relation between reduced variability and improved coordination performance was not observed when pairs of participants performed independent tasks next to each other without intending to coordinate. These findings support the claim that reducing variability is used as a coordination strategy to achieve predictability. Identifying coordination strategies contributes to the understanding of the mechanisms involved in real-time coordination

    Synchrony and Physiological Arousal Increase Cohesion and Cooperation in Large Naturalistic Groups

    Get PDF
    Separate research streams have identified synchrony and arousal as two factors that might contribute to the effects of human rituals on social cohesion and cooperation. But no research has manipulated these variables in the field to investigate their causal – and potentially interactive – effects on prosocial behaviour. Across four experimental sessions involving large samples of strangers, we manipulated the synchronous and physiologically arousing affordances of a group marching task within a sports stadium. We observed participants’ subsequent movement, grouping, and cooperation via a camera hidden in the stadium’s roof. Synchrony and arousal both showed main effects, predicting larger groups, tighter clustering, and more cooperative behaviour in a free-rider dilemma. However, synchrony and arousal interacted on measures of clustering and cooperation: such that synchrony only encouraged closer clustering — and encouraged greater cooperation—when paired with physiological arousal. The research has implications for understanding the nature and co-occurrence of synchrony and physiological arousal in rituals around the world. It also represents the first use of real-time spatial tracking as a precise and naturalistic method of simulating collective rituals
    corecore