23 research outputs found
Differentially Expressed in Chondrocytes 2 (DEC2) Increases the Expression of IL-1 beta and Is Abundantly Present in Synovial Membrane in Rheumatoid Arthritis
Objective Patients with rheumatoid arthritis (RA) have altered circadian rhythm of circulating serum cortisol, melatonin and IL-6, as well as disturbance in the expression of clock genes ARNTL2 and NPAS2. In humans, TNF alpha increases the expression ARNTL2 and NPAS2 but paradoxically suppresses clock output genes DPB and PER3. Our objective was to investigate the expression of direct clock suppressors DEC1 and DEC2 (BHLHE 40 and 41 proteins) in response to TNF alpha and investigate their role during inflammation. Methods Cultured primary fibroblasts were stimulated with TNF alpha. Effects on DEC2 were studied using RT-qPCR and immunofluorescence staining. The role of NF-kappa B in DEC2 increase was analyzed using IKK-2 specific inhibitor IMD-0354. Cloned DEC2 was transfected into HEK293 cells to study its effects on gene expression. Transfections into primary human fibroblasts were used to confirm the results. The presence of DEC2 was analyzed in (RA) and osteoarthritis (OA) synovial membranes by immunohistochemistry. Results TNF alpha increased DEC2 mRNA and DEC2 was mainly detected at nuclei after the stimulus. The effects of TNF alpha on DEC2 expression were mediated via NF-kappa B. Overexpression, siRNA and promoter activity studies disclosed that DEC2 directly regulates IL-1 beta, in both HEK293 cells and primary human fibroblasts. DEC2 was increased in synovial membrane in RA compared to OA. Conclusion Not only ARNTL2 and NPAS2 but also DEC2 is regulated by TNF alpha in human fibroblasts. NF-kappa B mediates the effect on DEC2, which upregulates IL-1 beta. Circadian clock has a direct effect on inflammation in human fibroblasts.Peer reviewe
A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair
The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.Peer reviewe
Selected Aspects in the Pathogenesis of Autoimmune Diseases
Autoimmune processes can be found in physiological circumstances. However, they are quenched with properly functioning regulatory mechanisms and do not evolve into full-blown autoimmune diseases. Once developed, autoimmune diseases are characterized by signature clinical features, accompanied by sustained cellular and/or humoral immunological abnormalities. Genetic, environmental, and hormonal defects, as well as a quantitative and qualitative impairment of immunoregulatory functions, have been shown in parallel to the relative dominance of proinflammatory Th17 cells in many of these diseases. In this review we focus on the derailed balance between regulatory and Th17 cells in the pathogenesis of autoimmune diseases. Additionally, we depict a cytokine imbalance, which gives rise to a biased T-cell homeostasis. The assessment of Th17/Treg-cell ratio and the simultaneous quantitation of cytokines, may give a useful diagnostic tool in autoimmune diseases. We also depict the multifaceted role of dendritic cells, serving as antigen presenting cells, contributing to the development of the pathognomonic cytokine signature and promote cellular and humoral autoimmune responses. Finally we describe the function and role of extracellular vesicles in particular autoimmune diseases. Targeting these key players of disease progression in patients with autoimmune diseases by immunomodulating therapy may be beneficial in future therapeutic strategies.Peer reviewe
The Cost-Effectiveness of Biologics for the Treatment of Rheumatoid Arthritis : A Systematic Review
Background and Objectives Economic evaluations provide information to aid the optimal utilization of limited healthcare resources. Costs of biologics for Rheumatoid arthritis (RA) are remarkably high, which makes these agents an important target for economic evaluations. This systematic review aims to identify existing studies examining the cost-effectiveness of biologics for RA, assess their quality and report their results systematically. Methods A literature search covering Medline, Scopus, Cochrane library, ACP Journal club and Web of Science was performed in March 2013. The cost-utility analyses (CUAs) of one or more available biological drugs for the treatment of RA in adults were included. Two independent investigators systematically collected information and assessed the quality of the studies. To enable the comparison of the results, all costs were converted to 2013 euro. Results Of the 4890 references found in the literature search, 41 CUAs were included in the current systematic review. While considering only direct costs, the incremental cost-effectiveness ratio (ICER) of the tumor necrosis factor inhibitors (TNFi) ranged from 39,000 to 1 273,000 (sic)/quality adjusted life year (QALY) gained in comparison to conventional disease-modifying antirheumatic drugs (cDMARDs) in cDMARD naive patients. Among patients with an insufficient response to cDMARDs, biologics were associated with ICERs ranging from 12,000 to 708,000 (sic)/QALY. Rituximab was found to be the most cost-effective alternative compared to other biologics among the patients with an insufficient response to TNFi. Conclusions When 35,000 (sic)/QALY is considered as a threshold for the ICER, TNFis do not seem to be cost-effective among cDMARD naive patients and patients with an insufficient response to cDMARDs. With thresholds of 50,000 to 100,000 (sic)/QALY biologics might be cost-effective among patients with an inadequate response to cDMARDs. Standardization of multiattribute utility instruments and a validated standard conversion method for missing utility measures would enable better comparison between CUAs.Peer reviewe
Establishment of Green Fluorescent Protein and Firefly Luciferase Expressing Mouse Primary Macrophages for In Vivo Bioluminescence Imaging
Macrophages play a key role in tissue homeostasis as well as in a range of pathological conditions including atherosclerosis, cancer, and autoimmunity. Many aspects of their in vivo behavior are, however, poorly understood. Bioluminescence imaging (BLI) with green fluorescent protein (GFP) and firefly luciferase (FLUC) labelled autologous reporter macrophages could potentially offer a powerful tool to study macrophage biology, but this approach has been hindered by the relative difficulty of efficient gene transfer into primary macrophages. Here we describe a straightforward method for producing large numbers of GFP/FLUC expressing mouse primary macrophages utilizing lentivirus vector, cyclosporine, and a double infection strategy. Using this method we achieved up to 60% of macrophages to express GFP with correspondingly high FLUC signal. When injected into the circulation using a mouse model of local biomaterial induced inflammation and osteolysis, macrophages were initially detectable within the lungs, followed by systemic homing to the local area of chronic inflammation in the distal femur. In addition, transduced macrophages maintained their ability to assume M1 and M2 phenotypes although the GFP/FLUC expression was altered by the polarizing signals. These reporter macrophages could prove to be valuable tools to study the role of macrophages in health and disease.Peer reviewe