1,650 research outputs found
Ferromagnetic 0-pi Junctions as Classical Spins
The ground state of highly damped PdNi based 0-pi ferromagnetic Josephson
junctions shows a spontaneous half quantum vortex, sustained by a supercurrent
of undetermined sign. This supercurrent flows in the electrode of a Josephson
junction used as a detector and produces a phi(0)/4 shift in its magnetic
diffraction pattern. We have measured the statistics of the positive or
negative sign shift occurring at the superconducting transition of such a
junction. The randomness of the shift sign, the reproducibility of its
magnitude and the possibility of achieving exact flux compensation upon field
cooling: all these features show that 0-pi junctions behave as classical spins,
just as magnetic nanoparticles with uniaxial anisotropy.Comment: 4 pages, 4 figure
Congenital erythropoietic porphyria associated with myelodysplasia presenting in a 72-year-old man: report of a case and review of the literature
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disease owing to the deficient activity of uroporphyrinogen III synthase, the fourth enzyme in the porphyrin–haem synthetic pathway. Of the porphyrias, it is the most mutilating type, usually presenting early in life. To date, 12 documented cases of adult onset CEP have been reported. We report the second oldest documented patient with late onset CEP with incidental findings of thrombocytopenia and myelodysplasia with bone-marrow sideroblasts. We further discuss several current and future treatment options for this therapeutically challenging disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73760/1/j.1365-2133.2003.05040.x.pd
Improved NASA-ANOPP Noise Prediction Computer Code for Advanced Subsonic Propulsion Systems
Recent experience using ANOPP to predict turbofan engine flyover noise suggests that it over-predicts overall EPNL by a significant amount. An improvement in this prediction method is desired for system optimization and assessment studies of advanced UHB engines. An assessment of the ANOPP fan inlet, fan exhaust, jet, combustor, and turbine noise prediction methods is made using static engine component noise data from the CF6-8OC2, E(3), and QCSEE turbofan engines. It is shown that the ANOPP prediction results are generally higher than the measured GE data, and that the inlet noise prediction method (Heidmann method) is the most significant source of this overprediction. Fan noise spectral comparisons show that improvements to the fan tone, broadband, and combination tone noise models are required to yield results that more closely simulate the GE data. Suggested changes that yield improved fan noise predictions but preserve the Heidmann model structure are identified and described. These changes are based on the sets of engine data mentioned, as well as some CFM56 engine data that was used to expand the combination tone noise database. It should be noted that the recommended changes are based on an analysis of engines that are limited to single stage fans with design tip relative Mach numbers greater than one
Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts
We report on spin dependent transport measurements in carbon nanotubes based
multi-terminal circuits. We observe a gate-controlled spin signal in non-local
voltages and an anomalous conductance spin signal, which reveal that both the
spin and the orbital phase can be conserved along carbon nanotubes with
multiple ferromagnetic contacts. This paves the way for spintronics devices
exploiting both these quantum mechanical degrees of freedom on the same
footing.Comment: 8 pages - minor differences with published versio
Superconducting crossed correlations in ferromagnets: implications for thermodynamics and quantum transport
It is demonstrated that non local Cooper pairs can propagate in ferromagnetic
electrodes having an opposite spin orientation. In the presence of such crossed
correlations, the superconducting gap is found to depend explicitly on the
relative orientation of the ferromagnetic electrodes. Non local Cooper pairs
can in principle be probed with dc-transport. With two ferromagnetic
electrodes, we propose a ``quantum switch'' that can be used to detect
correlated pairs of electrons. With three or more ferromagnetic electrodes, the
Cooper pair-like state is a linear superposition of Cooper pairs which could be
detected in dc-transport. The effect also induces an enhancement of the
ferromagnetic proximity effect on the basis of crossed superconducting
correlations propagating along domain walls.Comment: 4 pages, RevTe
Active Control of Fan Noise: Feasibility Study
An extension of a prior study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct, at least to the extent that they no longer protrude above the surrounding broadband noise levels. Thus, without considering the engineering details of the ANC system design, tone levels am arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios of 1.3, 1.45, 1.6, and 1.75. This report is an extension of an effort reported previously. The major conclusions drawn from the prior study, which was restricted to fan pressure ratios of 1.45 and 1.75, are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC. For a fan pressure ratio of 1.45, ANC appears to offer less effectiveness from passive treatment. In the present study, the other two fan pressure ratios are included in a more detailed examination of the benefits of the ANC suppression levels. The key results of this extended study are the following observations: (1) The maximum overall benefit obtained from suppression of BPF alone was 2.5 EPNdB at high fan speeds. The suppression benefit increases with increase in fan pressure ratio (FPR), (2) The maximum overall benefit obtained from suppression of the first three harmonics was 3 EPNdB at high speeds. Suppression benefit increases with increase in FPR, (3) At low FPR, only about 1.0 EPNdB maximum reduction was obtained. Suppression is primarily from reduction of BPF at high FPR values and from the combination of tones at low FPR, (4) The benefit from ANC is about the same as the benefit from passive treatment at fan pressure ratios of 1.75 and 1.60. At the two lower fan pressure ratios, the effectivness of treatment is much greater than that of ANC, and (5) No significant difference in ANC suppression behavior was found from the QCSEE engine database analysis compared to that of the E3 engine database, for the FPR = 1.3 engine cycle. The effects of ANC on EPNL noise reduction are difficult to generalize. It was found that the reduction obtained in any particular case depended upon the frequency of the tones and their shift with rpm, the amount of ANC suppression received by each tone (which depended on its protrusion from the background), and the NOY-value of the tone relative to the NOY-value of other tones and the peak broadband levels, because PNL is determined from the sum of the NOY-values
Active Control of Fan Noise-Feasibility Study
A study has been completed to examine the potential reduction of aircraft flyover noise by the method of active noise control (ANC). It is assumed that the ANC system will be designed such that it cancels discrete tones radiating from the engine fan inlet or fan exhaust duct. Thus, without considering the engineering details of the ANC system design, tone levels are arbitrarily removed from the engine component noise spectrum and the flyover noise EPNL levels are compared with and without the presence of tones. The study was conducted for a range of engine cycles, corresponding to fan pressure ratios from 1.3 to 1.75. The major conclusions that can be drawn are that, for a fan pressure ratio of 1.75, ANC of tones gives about the same suppression as acoustic treatment without ANC, and for a fan pressure ratio of 1.45, ANC appears to offer less effectiveness than passive treatment. Additionally, ANC appears to be more effective at sideline and cutback conditions than at approach. Overall EPNL suppressions due to tone removal range from about 1 to 3 dB at takeoff engine speeds and from 1 to 5 db at approach speeds. Studies of economic impact of the installation of an ANC system for the four engine cases indicate increases of DOC ranging from 1 to 2 percent, favoring the lower fan pressure ratio engines. Further study is needed to confirm the results by examining additional engine data, particularly at low fan pressure ratios, and studying the details of the current results to obtain a more complete understanding. Further studies should also include determining the effects of combining passive and active treatment
Cross section measurement of N 14 ( p , Îł ) O 15 in the CNO cycle
Background: The CNO cycle is the main energy source in stars more massive than our sun; it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clusters. In our sun about 1.6% of the total solar neutrino flux comes from the CNO cycle. The largest uncertainty in the prediction of this CNO flux from the standard solar model comes from the uncertainty in the ^{14}\mathrm{N}(p,\ensuremath{\gamma})^{15}\mathrm{O} reaction rate; thus, the determination of the cross section at astrophysical temperatures is of great interest.Purpose: The total cross section of the ^{14}\mathrm{N}(p,\ensuremath{\gamma})^{15}\mathrm{O} reaction has large contributions from the transitions to the excited state and the ground state of . The transition is dominated by radiative direct capture, while the ground state is a complex mixture of direct and resonance capture components and the interferences between them. Recent studies have concentrated on cross-section measurements at very low energies, but broad resonances at higher energy may also play a role. A single measurement has been made that covers a broad higher-energy range but it has large uncertainties stemming from uncorrected summing effects. Furthermore, the extrapolations of the cross section vary significantly depending on the data sets considered. Thus, new direct measurements have been made to improve the previous high-energy studies and to better constrain the extrapolation.Methods: Measurements were performed at the low-energy accelerator facilities of the nuclear science laboratory at the University of Notre Dame. The cross section was measured over the proton energy range from to 3.6 MeV for both the ground state and the transitions at {\ensuremath{\theta}}_{\text{lab}}={0}^{\ensuremath{\circ}}, {45}^{\ensuremath{\circ}}, {90}^{\ensuremath{\circ}}, {135}^{\ensuremath{\circ}}, and {150}^{\ensuremath{\circ}}. Both TiN and implanted- targets were utilized. \ensuremath{\gamma} rays were detected by using an array of high-purity germanium detectors.Results: The excitation function as well as angular distributions of the two transitions were measured. A multichannel -matrix analysis was performed with the present data and is compared with previous measurements. The analysis covers a wide energy range so that the contributions from broad resonances and direct capture can be better constrained.Conclusion: The astrophysical factors of the and the ground-state transitions were extrapolated to low energies with the newly measured differential-cross-section data. Based on the present work, the extrapolations yield {S}_{6.79}(0)=1.29\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\ifmmode\pm\else\textpm\fi{}0.09(\mathrm{syst})\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b} and {S}_{\text{g.s.}}(0)=0.42\ifmmode\pm\else\textpm\fi{}0.04(\mathrm{stat})\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b}. While significant improvement and consistency is found in modeling the transition, large inconsistencies in both the -matrix fitting and the low-energy data are reaffirmed for the ground-state transition. Reflecting this, a systematic uncertainty of {}_{\ensuremath{-}0.19}^{+0.09}\phantom{\rule{4pt}{0ex}}\mathrm{keV}\phantom{\rule{0.16em}{0ex}}\mathrm{b} is recommended for the ground-state transition
- …