41 research outputs found

    Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316.

    Get PDF
    International audienceStreptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host

    A Flavor Lactone Mimicking AHL Quorum-Sensing Signals Exploits the Broad Affinity of the QsdR Regulator to Stimulate Transcription of the Rhodococcal qsd Operon Involved in Quorum-Quenching and Biocontrol Activities

    Get PDF
    In many Gram-negative bacteria, virulence, and social behavior are controlled by quorum-sensing (QS) systems based on the synthesis and perception of N-acyl homoserine lactones (AHLs). Quorum-quenching (QQ) is currently used to disrupt bacterial communication, as a biocontrol strategy for plant crop protection. In this context, the Gram-positive bacterium Rhodococcus erythropolis uses a catabolic pathway to control the virulence of soft-rot pathogens by degrading their AHL signals. This QS signal degradation pathway requires the expression of the qsd operon, encoding the key enzyme QsdA, an intracellular lactonase that can hydrolyze a wide range of substrates. QsdR, a TetR-like family regulator, represses the expression of the qsd operon. During AHL degradation, this repression is released by the binding of the Îł-butyrolactone ring of the pathogen signaling molecules to QsdR. We show here that a lactone designed to mimic quorum signals, Îł-caprolactone, can act as an effector ligand of QsdR, triggering the synthesis of qsd operon-encoded enzymes. Interaction between Îł-caprolactone and QsdR was demonstrated indirectly, by quantitative RT-PCR, molecular docking and transcriptional fusion approaches, and directly, in an electrophoretic mobility shift assay. This broad-affinity regulatory system demonstrates that preventive or curative quenching therapies could be triggered artificially and/or managed in a sustainable way by the addition of Îł-caprolactone, a compound better known as cheap food additive. The biostimulation of QQ activity could therefore be used to counteract the lack of consistency observed in some large-scale biocontrol assays

    Dual Role for Pilus in Adherence to Epithelial Cells and Biofilm Formation in Streptococcus agalactiae

    Get PDF
    Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain NEM316. This pilus is composed of three structural subunit proteins: Gbs1478 (PilA), Gbs1477 (PilB), and Gbs1474 (PilC), and its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component; PilA, the pilus associated adhesin, and PilC, are both accessory proteins incorporated into the pilus backbone. We first addressed the role of the housekeeping sortase A in pilus biogenesis and showed that it is essential for the covalent anchoring of the pilus fiber to the peptidoglycan. We next aimed at understanding the role of the pilus fiber in bacterial adherence and at resolving the paradox of an adhesive but dispensable pilus. Combining immunoblotting and electron microscopy analyses, we showed that the PilB fiber is essential for efficient PilA display on the surface of the capsulated strain NEM316. We then demonstrated that pilus integrity becomes critical for adherence to respiratory epithelial cells under flow-conditions mimicking an in vivo situation and revealing the limitations of the commonly used static adherence model. Interestingly, PilA exhibits a von Willebrand adhesion domain (VWA) found in many extracellular eucaryotic proteins. We show here that the VWA domain of PilA is essential for its adhesive function, demonstrating for the first time the functionality of a prokaryotic VWA homolog. Furthermore, the auto aggregative phenotype of NEM316 observed in standing liquid culture was strongly reduced in all three individual pilus mutants. S. agalactiae strain NEM316 was able to form biofilm in microtiter plate and, strikingly, the PilA and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain involved in adherence to epithelial cells was not required for biofilm formation

    BiosynthÚse, régulation et rÎle(s) du pilus chez Streptococcus agalactiae

    No full text
    Article en anglaisPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    The c-Myc target gene Rcl (C6orf108) encodes a novel enzyme, deoxynucleoside 5'-monophosphate N-glycosidase.

    No full text
    International audienceRCL is a c-Myc target with tumorigenic potential. Genome annotation predicted that RCL belonged to the N-deoxyribosyltransferase family. However, its putative relationship to this class of enzymes did not lead to its precise biochemical function. The purified native or N-terminal His-tagged recombinant rat RCL protein expressed in Escherichia coli exhibits the same enzyme activity, deoxynucleoside 5'-monophosphate N-glycosidase, never before described. dGMP appears to be the best substrate. RCL opens a new route in the nucleotide catabolic pathways by cleaving the N-glycosidic bond of deoxynucleoside 5'-monophosphates to yield two reaction products, deoxyribose 5-phosphate and purine or pyrimidine base. Biochemical studies show marked differences in the terms of the structure and catalytic mechanism between RCL and of its closest enzyme family neighbor, N-deoxyribosyltransferase. The reaction products of this novel enzyme activity have been implicated in purine or pyrimidine salvage, glycolysis, and angiogenesis, and hence are all highly relevant for tumorigenesis
    corecore