65 research outputs found

    Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration

    Get PDF
    Cells sense gradients of extracellular cues and generate polarized responses such as cell migration and neurite initiation. There is static information on the intracellular signaling molecules involved in these responses, but how they dynamically orchestrate polarized cell behaviors is not well understood. A limitation has been the lack of methods to exert spatial and temporal control over specific signaling molecules inside a living cell. Here we introduce optogenetic tools that act downstream of native G protein–coupled receptor (GPCRs) and provide direct control over the activity of endogenous heterotrimeric G protein subunits. Light-triggered recruitment of a truncated regulator of G protein signaling (RGS) protein or a Gβγ-sequestering domain to a selected region on the plasma membrane results in localized inhibition of G protein signaling. In immune cells exposed to spatially uniform chemoattractants, these optogenetic tools allow us to create reversible gradients of signaling activity. Migratory responses generated by this approach show that a gradient of active G protein αi and βγ subunits is sufficient to generate directed cell migration. They also provide the most direct evidence so for a global inhibition pathway triggered by Gi signaling in directional sensing and adaptation. These optogenetic tools can be applied to interrogate the mechanistic basis of other GPCR-modulated cellular functions

    Groundwater recharge studies

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:D82587 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    C5a, but not C5a-des Arg, induces upregulation of heteromer formation between complement C5a receptors C5aR and C5L2

    No full text
    Receptors for C5a have an important role in innate immunity and inflammation where their expression and activation is tightly regulated. There are two known receptors for C5a: the C5a receptor (C5aR) and the C5a receptor like-2 (C5L2) receptor. Here we hypothesized that activation of C5aR might lead to heteromer formation with C5L2, as a downregulatory mechanism for C5aR signaling. To investigate this experimentally, bioluminescent resonance energy transfer (BRET) was implemented and supported by wide-field microscopy to analyze receptor localization in transfected HEK293 cells and human monocyte-derived macrophages (HMDM). BRET experiments indicated the presence of constitutive C5aR-C5L2 heteromers, where C5a, but not C5a-des Arg, was able to induce further heteromer formation, which was inhibited by a C5aR-specific antagonist. The data obtained suggest that C5aR-C5L2 can form heteromers in a process enhanced by C5a, but not by C5a-des Arg. There was also a significant difference in the levels of the anti-inflammatory cytokine IL-10 detected in HMDM following exposure to C5a compared with that seen for C5a-des Arg but no differences in the pro-inflammatory cytokines TNF alpha and IL-6. These subtle differences in C5a and C5a-des Arg induced receptor function may be of benefit in understanding the regulation of C5a in acute inflammation
    • …
    corecore