8 research outputs found

    Fungal diversity notes 253–366: taxonomic and phylogenetic contributions to fungal taxa

    Get PDF
    Notes on 113 fungal taxa are compiled in this paper, including 11 new genera, 89 new species, one new subspecies, three new combinations and seven reference specimens. A wide geographic and taxonomic range of fungal taxa are detailed. In the Ascomycota the new genera Angustospora (Testudinaceae), Camporesia (Xylariaceae), Clematidis, Crassiparies (Pleosporales genera incertae sedis), Farasanispora, Longiostiolum (Pleosporales genera incertae sedis), Multilocularia (Parabambusicolaceae), Neophaeocryptopus (Dothideaceae), Parameliola (Pleosporales genera incertae sedis), and Towyspora (Lentitheciaceae) are introduced. Newly introduced species are Angustospora nilensis, Aniptodera aquibella, Annulohypoxylon albidiscum, Astrocystis thailandica, Camporesia sambuci, Clematidis italica, Colletotrichum menispermi, C. quinquefoliae, Comoclathris pimpinellae, Crassiparies quadrisporus, Cytospora salicicola, Diatrype thailandica, Dothiorella rhamni, Durotheca macrostroma, Farasanispora avicenniae, Halorosellinia rhizophorae, Humicola koreana, Hypoxylon lilloi, Kirschsteiniothelia tectonae, Lindgomyces okinawaensis, Longiostiolum tectonae, Lophiostoma pseudoarmatisporum, Moelleriella phukhiaoensis, M. pongdueatensis, Mucoharknessia anthoxanthi, Multilocularia bambusae, Multiseptospora thysanolaenae, Neophaeocryptopus cytisi, Ocellularia arachchigei, O. ratnapurensis, Ochronectria thailandica, Ophiocordyceps karstii, Parameliola acaciae, P. dimocarpi, Parastagonospora cumpignensis, Pseudodidymosphaeria phlei, Polyplosphaeria thailandica, Pseudolachnella brevifusiformis, Psiloglonium macrosporum, Rhabdodiscus albodenticulatus, Rosellinia chiangmaiensis, Saccothecium rubi, Seimatosporium pseudocornii, S. pseudorosae, Sigarispora ononidis and Towyspora aestuari. New combinations are provided for Eutiarosporella dactylidis (sexual morph described and illustrated) and Pseudocamarosporium pini. Descriptions, illustrations and / or reference specimens are designated for Aposphaeria corallinolutea, Cryptovalsa ampelina, Dothiorella vidmadera, Ophiocordyceps formosana, Petrakia echinata, Phragmoporthe conformis and Pseudocamarosporium pini. The new species of Basidiomycota are Agaricus coccyginus, A. luteofibrillosus, Amanita atrobrunnea, A. digitosa, A. gleocystidiosa, A. pyriformis, A. strobilipes, Bondarzewia tibetica, Cortinarius albosericeus, C. badioflavidus, C. dentigratus, C. duboisensis, C. fragrantissimus, C. roseobasilis, C. vinaceobrunneus, C. vinaceogrisescens, C. wahkiacus, Cyanoboletus hymenoglutinosus, Fomitiporia atlantica, F. subtilissima, Ganoderma wuzhishanensis, Inonotus shoreicola, Lactifluus armeniacus, L. ramipilosus, Leccinum indoaurantiacum, Musumecia alpina, M. sardoa, Russula amethystina subp. tengii and R. wangii are introduced. Descriptions, illustrations, notes and / or reference specimens are designated for Clarkeinda trachodes, Dentocorticium ussuricum, Galzinia longibasidia, Lentinus stuppeus and Leptocorticium tenellum. The other new genera, species new combinations are Anaeromyces robustus, Neocallimastix californiae and Piromyces finnis from Neocallimastigomycota, Phytophthora estuarina, P. rhizophorae, Salispina, S. intermedia, S. lobata and S. spinosa from Oomycota, and Absidia stercoraria, Gongronella orasabula, Mortierella calciphila, Mucor caatinguensis, M. koreanus, M. merdicola and Rhizopus koreanus in Zygomycota

    Evaluation Of The Antihypertensive Properties Of Yellow Passion Fruit Pulp (passiflora Edulis Sims F. Flavicarpa Deg.) In Spontaneously Hypertensive Rats

    No full text
    Various species of the genus Passiflora have been extensively used in traditional medicine as sedatives, anxiolytics, diuretics and analgesics. In the present study, after the identification and quantification of phytochemical compounds from yellow passion fruit pulp by liquid chromatography-photodiode array-mass spectrometry (HPLC-PDA-MS/MS), its antihypertensive effect was investigated on spontaneously hypertensive rats. Additionally, the renal function, evaluated by kidney/body weight, serum creatinine, proteinuria, urinary flow, reduced glutathione (GSH) levels and thiobarbituric acid-reactive substances (TBARS) and mutagenicity in bone marrow cells were assessed to evaluate the safety of passion fruit consumption. Yellow passion fruit pulp (5, 6 or 8 g/kg b.w.) was administered by gavage once a day for 5 consecutive days. HLPC-PDA-MS/MS analysis revealed that yellow passion fruit pulp contains phenolic compounds, ascorbic acid, carotenoids and flavonoids. The highest dose of passion fruit pulp significantly reduced the systolic blood pressure, increased the GSH levels and decreased TBARS. There were no changes in renal function parameters or the frequency of micronuclei in bone marrow cells. In conclusion, the antihypertensive effect of yellow passion fruit pulp, at least in part, might be due to the enhancement of the antioxidant status. The exact mechanisms responsible by this effect need further investigation. Copyright © 2013 John Wiley & Sons, Ltd.2812832Appel, K., Rose, T., Fiebich, B., Kammler, T., Hoffmann, C., Weiss, G., Modulation of the γ-aminobutyric acid (GABA) system by Passiflora incarnata L (2011) Phytother. Res., 25, pp. 838-843Biswas, S.K., De Faria, J.B.L., Which comes first: Renal inflammation or oxidative stress in spontaneously hypertensive rats? (2007) Free Radic. Res., 41, pp. 216-224Boeira, J.M., Fenner, R., Betti, A.H., Toxicity and genotoxicity evaluation of Passiflora alata Curtis (Passifloraceae) (2010) J. Ethnopharmacol., 128, pp. 526-532Bradford, M.M., A rapid sensitive method for the quantitation of microgram quantities on protein utilizing the principle or protein-dye binding (1976) Eur. J. Anaesthesiol., 25, pp. 248-256Chen, D., Coffman, T.M., The kidney and hypertension: Lessons from mouse models (2012) Can. J. Cardiol., 28, pp. 305-310De Rosso, V.V., Mercadante, A.Z., The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola (2007) Food Chem., 103, pp. 935-943De Rosso, V.V., Mercadante, A.Z., Identification and quantification of carotenoids, by HPLC-PDA-MS/MS, from amazonian fruits (2007) J. Agric. Food Chem., 55, pp. 5062-5072Dhawan, K., Dhawan, S., Sharma, A., Passiflora: A review update (2004) J. Ethnopharmacol., 94, pp. 1-23Dornas, W.C., Silva, M.E., Animal models for the study of arterial hypertension (2011) J. Biosci., 36, pp. 731-737Duarte, J., Perez-Vizcaino, F., Zarzuelo, A., Jimenez, J., Tamargo, J., Vasodilator effects of quercetin in isolated rat vascular smooth muscle (1993) Eur. J. Pharmacol., 239, pp. 1-7Duarte, J., Perez-Palencia, R., Vargas, F., Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats (2001) Br. J. Pharmacol., 133, pp. 117-124Evangelista, C.M., Antunes, L.M., Francescato, H.D., Bianchi, M.L., Effects of the olive, extra virgin olive and canola oils on cisplatin-induced clastogenesis in Wistar rats (2004) Food Chem. Toxicol., 42, pp. 1291-1297Harrison, D.G., Gongora, M.C., Oxidative stress and hypertension (2009) Med. Clin. North Am., 93, pp. 621-635Hartree, E.F., Determination of protein: A modification of the lowry method that gives a linear photometric response (1972) Anal. Biochem., 48, pp. 422-427Hayashi, M., MacGregor, J.T., Gatehouse, D.G., In vivo rodent erythrocyte micronucleus assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity testing, and automated scoring (2000) Environ. Mol. Mutagen., 35, pp. 234-252Houston, M.C., The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease (2010) Ther. Adv. Cardiovasc. Dis., 4, pp. 165-183Ichimura, T., Yamanaka, A., Ichiba, T., Antihypertensive effect of an extract of Passiflora edulis rind in spontaneously hypertensive rats (2006) Biosci. Biotechnol. Biochem., 70, pp. 718-721Kizhakekuttu, T.J., Widlansky, M.E., Natural antioxidants and hypertension: Promise and challenges (2010) Cardiovasc. Ther., 28, pp. e20-e32MacGregor, J.T., Heddle, J.A., Hite, M., Guidelines for the conduct of micronucleus assays in mammalian bone-marrow erythrocytes (1987) Mutat. Res., 189, pp. 103-112Mercadante, A.Z., Britton, G., Rodriguez-Amaya, D.B., Carotenoids from yellow passion fruit (Passiflora edulis) (1998) J. Agric. Food Chem., 46, pp. 4102-4106Montezano, A.C., Touyz, R.M., Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: A basic science update for the clinician (2012) Can. J. Cardiol., 28, pp. 288-295Ngan, A., Conduit, R., A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality (2011) Phytother. Res., 25, pp. 1153-1159Palm, F., Nordquist, L., Renal oxidative stress, oxygenation, and hypertension (2011) Am. J. Physiol. Regul. Integr. Comp. Physiol., 301, pp. R1229-R1241Reginatto, F.H., De-Paris, F., Petry, R.D., Evaluation of anxiolytic activity of spray dried powders of two South Brazilian Passiflora species (2006) Phytother. Res., 20, pp. 348-351Rodrigo, R., Gil, D., Miranda-Merchak, A., Kalantzidis, G., Antihypertensive role of polyphenols (2012) Adv. Clin. Chem., 58, pp. 225-254Sdlak, J., Lindsay, R.H., Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent (1968) Anal. Biochem., 24, pp. 192-205Singleton, V.L., Rossi, Jr.J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents (1965) Am. J. Enol. Vitic., 16, pp. 144-158De Souza, M.D.S., Barbalho, S.M., Damasceno, D.C., Effects of Passiflora edulis (Yellow Passion) on Serum Lipids and Oxidative Stress Status of Wistar Rats (2012) J. Med. Food, 15, pp. 78-82Uchiyama, M., Mihara, M., Determination of malonaldehyde precursor in tissues by thiobarbituric acid test (1978) Anal. Biochem., 86, pp. 271-278Vasdev, S., Ford, C.A., Parai, S., Longerich, L., Gadag, V., Dietary vitamin C supplementation lowers blood pressure in spontaneously hypertensive rats (2001) Mol. Cell. Biochem., 218, pp. 97-103Vianna, L.M., Paiva, A.C.M., Paiva, T.B., Treatment with vitamin-d3 reduces blood-pressure of spontaneously hypertensive rats (1992) Genetic Hypertension, 218, pp. 589-591Wolfsegger, M.J., Jaki, T., Dietrich, B., Kunzler, J.A., Barker, K., A note on statistical analysis of organ weights in non-clinical toxicological studies (2009) Toxicol. Appl. Pharmacol., 240, pp. 117-122Yeh, C.-T., Huang, W.-H., Yen, G.-C., Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats (2009) J. Nutr. Biochem., 20, pp. 866-875Zhishen, J., Mengcheng, T., Jianming, W., The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals (1999) Food Chem., 64, pp. 555-559Zibadi, S., Farid, R., Moriguchi, S., Oral administration of purple passion fruit peel extract attenuates blood pressure in female spontaneously hypertensive rats and humans (2007) Nutr. Res., 27, pp. 408-41

    Natural Therapeutic Options in Endodontics - A Review

    No full text
    corecore