3 research outputs found

    Abundances of microRNAs in human cells can be estimated as a function of the abundances of YRHB and RHHK tetranucleotides in these microRNAs as an ill-posed inverse problem solution

    Get PDF
    Mature microRNAs (miRNAs) are small endogenous non-coding RNAs 18-25 nt in length. They program the RNA Induced Silencing Complex (RISC) to make it inhibit either messenger RNAs or promoter DNAs. We have found that the mean abundance of miRNAs in Arabidopsis is correlated with the abundance of DRYD tetranucleotides near the 3’-end and the abundance of WRHB tetranucleotides in the center of the miRNA sequence. Based on this correlation, we have estimated miRNA abundances in seven organs of this plant, namely: inflorescences, stems, siliques, seedlings, roots, cauline, and rosette leaves. We have also found that the mean affinity of miRNAs for two proteins in the Argonaute family (Ago2 and Ago3) in man is correlated with the abundance of YRHB tetranucleotides near the 3’-end and that the preference of miRNAs for Ago2 is correlated with the abundance of RHHK tetranucleotides in the center of the miRNA sequence. This allowed us to obtain statistically significant estimates of miRNA abundances in human embryonic kidney cells, HEK293T. These findings in relation to two taxonomically distant entities (man and Arabidopsis) fit one another like pieces of a jigsaw puzzle, which allowed us to heuristically generalize them and state that the miRNA abundance in the human brain may be determined by the abundance of YRHB and RHHK tetranucleotides in these miRNAs

    Integrative Pan-Cancer Genomic and Transcriptomic Analyses of Refractory Metastatic Cancer

    No full text
    International audienceMetastatic relapse after treatment is the leading cause of cancer mortality, and known resistance mechanisms are missing for most treatments administered to patients. To bridge this gap, we analyze a pan-cancer cohort (META-PRISM) of 1,031 refractory metastatic tumors profiled via whole-exome and transcriptome sequencing. META-PRISM tumors, particularly prostate, bladder, and pancreatic types, displayed the most transformed genomes compared with primary untreated tumors. Standard-of-care resistance biomarkers were identified only in lung and colon cancers-9.6% of META-PRISM tumors, indicating that too few resistance mechanisms have received clinical validation. In contrast, we verified the enrichment of multiple investigational and hypothetical resistance mechanisms in treated compared with nontreated patients, thereby confirming their putative role in treatment resistance. Additionally, we demonstrated that molecular markers improve 6-month survival prediction, particularly in patients with advanced breast cancer. Our analysis establishes the utility of the META-PRISM cohort for investigating resistance mechanisms and performing predictive analyses in cancer. SIGNIFICANCE: This study highlights the paucity of standard-of-care markers that explain treatment resistance and the promise of investigational and hypothetical markers awaiting further validation. It also demonstrates the utility of molecular profiling in advanced-stage cancers, particularly breast cancer, to improve the survival prediction and assess eligibility to phase I clinical trials. This article is highlighted in the In This Issue feature, p. 1027
    corecore