45 research outputs found

    Can the state of platinum species be unambiguously determined by the stretching frequency of adsorbed CO probe molecule?

    Get PDF
    The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt0, with C-O vibrational frequencies in the region 2018-2077 cm−1, suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm−1. This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches

    Dynamics of bound states of dihydrogen at Cu(I) and Cu(II) species coordinated near one and two zeolite framework aluminium atoms: A combined sorption, INS, IR and DFT study

    Get PDF
    Abstract Ambient conditions sorption isotherms of dihydrogen in a series of various levels of Cu-exchanged ZSM-5 zeolites, with two different Si/Al ratios, namely 11.5 and 25, show the presence of different amount of Cu centres able to strongly bind H2. Although the isosteric heats of adsorption derived from these isotherms are rather similar, of the order of 30 kJ/mol H2, Inelastic Neutron Scattering (INS) of adsorbed dihydrogen and Fourier-Transformed Infra-Red (FTIR) spectroscopy measurements of adsorbed CO and NO reveal that copper is encountered in two oxidation states. At least two types of Cu(I) ions are clearly detected as well as some heterogeneity of the Cu(II) species. The number of these Cu species is different in the two investigated ZSM-5 materials and depends on the Cu exchange level. With the aid of DFT model cluster calculations we find that under different coordination environments, determined by the Al distribution, both mono- and divalent Cu ions could bind H2 with a different strength. Unprecedentedly, we found that Cu-ions compensating two Al atoms, i.e. formally Cu(II) species, relatively far apart from each other, may behave very similarly to the monovalent Cu-species or alternatively viewed – as Cu(I) species that compensate for two framework Al-atoms. Such Cu-species also form stable η2 dihydrogen complexes

    Modulator-controlled synthesis of microporous STA-26, an interpenetrated 8,3-connected zirconium MOF with the the-i topology, and its reversible lattice shift

    Get PDF
    The authors acknowledge the support of the EPSRC/St Andrews Criticat CDT (RRRP, PAW) and the European Community Seventh Framework Program (FP7/2007-2013) number 608490 (project M4CO2) (KKC, MYM, KIH, PAW). SEA would like to thank the Royal Society and Wolfson Foundation for a merit award. This research made use of the Balena High Performance Computing (HPC) Service at the University of Bath. The research data (and/or materials) supporting this publication can be accessed at DOI: http://dx.doi.org/10.17630/6ffeed8a-e75f-4648-968f-3ed32a94e9a0.A fully interpenetrated 8,3-connected zirconium MOF with the the-i topology type, STA-26 (St Andrews porous material-26), has been prepared using the 4,4',4"-(2,4,6-trimethylbenzene-1,3,5-triyl)tribenzoate (TMTB) tritopic linker with formic acid as a modulating agent. In the as-prepared form STA-26 possesses Im-3m symmetry compared with the Pm-3m symmetry of the non-interpenetrated analogue, NU-1200, prepared using benzoic acid as a modulator. Upon removal of residual solvent there is a shift between the interpenetrating lattices and a resultant symmetry change to Cmcm which is fully reversible. This is observed by X-ray diffraction and 13C MAS NMR is also found to be remarkably sensitive to the structural transition. Furthermore, heating STA-26(Zr) in vacuum dehydroxylates the Zr6 nodes leaving coordinatively unsaturated Zr4+ sites, as shown by IR spectroscopy using CO and CD3CN as probe molecules. Nitrogen adsorption at 77 K together with grand canonical Monte Carlo simulations confirms a microporous, fully interpenetrated, structure with pore volume 0.53 cm3 g−1 while CO2 adsorption at 196 K reaches 300 cm3 STP g−1 at 1 bar. While the pore volume is smaller than that of its non-interpenetrated mesoporous analogue, interpenetration makes the structure more stable to moisture adsorption and introduces shape selectivity in adsorption.PostprintPeer reviewe

    Low-Temperature CO Adsorption on Ag +

    No full text

    Can the state of platinum species be unambiguously determined by the stretching frequency of adsorbed CO probe molecule?

    No full text
    The paper addresses possible ambiguities in the determination of the state of platinum species by the stretching frequency of a CO probe, which is a common technique for characterization of platinum-containing catalytic systems. We present a comprehensive comparison of the available experimental data with our theoretical modeling (density functional) results of pertinent systems - platinum surfaces, nanoparticles and clusters as well as reduced or oxidized platinum moieties on a ceria support. Our results for CO adsorbed on-top on metallic Pt0, with C-O vibrational frequencies in the region 2018-2077 cm−1, suggest that a decrease of the coordination number of the platinum atom, to which CO is bound, by one lowers the CO frequency by about 7 cm−1. This trend corroborates the Kappers-van der Maas correlation derived from the analysis of the experimental stretching frequency of CO adsorbed on platinum-containing samples on different supports. We also analyzed the effect of the charge of platinum species on the CO frequency. Based on the calculated vibrational frequencies of CO in various model systems, we concluded that the actual state of the platinum species may be mistaken based only on the measured value of the C-O vibrational frequency due to overlapping regions of frequencies corresponding to different types of species. In order to identify the actual state of platinum species one has to combine this powerful technique with other approaches
    corecore