34 research outputs found

    Local ablation or radioembolization of colorectal cancer metastases: comorbidities or older age do not affect overall survival

    Get PDF
    Background: Local ablative techniques are emerging in patients with oligometastatic disease from colorectal carcinoma, commonly described as less invasive than surgical methods. This single arm cohort seeks to determine whether such methods are suitable in patients with comorbidities or higher age. Methods: Two hundred sixty-six patients received radiofrequency ablation (RFA), CT-guided high-dose rate brachytherapy (HDR-BT) or Y90-radioembolization (Y90-RE) during treatment of metastatic colorectal cancer (mCRC). This cohort comprised of patients with heterogenous disease stages from single liver lesions to multiple organ systems involvement commonly following multiple chemotherapy lines. Data was reviewed retrospectively for patient demographics, previous therapies, initial or disease stages at first intervention, comorbidities and mortality. Comorbidity was measured using the Charlson Comorbidity Index (CCI) and age-adjusted Charlson Index (CACI) excluding mCRC as the index disease. Kaplan-Meier survival analysis and Cox regression were used for statistical analysis. Results: Overall median survival of 266 patients was 14 months. Age >= 70 years did not influence survival after local therapies. Similarly, CCI or CACI did not affect the patients prognoses in multivariate analyses. Moderate or severe renal insufficiency (n = 12;p = 0.005) was the only single comorbidity identified to negatively affect the outcome after local therapy. Conclusion: Interventional procedures for mCRC may be performed safely even in elderly and comorbid patients. In severe renal insufficiency, the use of invasive techniques should be limited to selected cases

    Extensive Use of Interventional Therapies Improves Survival in Unresectable or Recurrent Intrahepatic Cholangiocarcinoma

    Get PDF
    Aim. To assess the outcomes of patients with unresectable intrahepatic cholangiocellular carcinoma (ICC) treated by a tailored therapeutic approach, combining systemic with advanced image-guided local or locoregional therapies. Materials and Methods. Treatment followed an algorithm established by a multidisciplinary GI-tumor team. Treatment options comprised ablation (RFA, CT-guided brachytherapy) or locoregional techniques (TACE, radioembolization, i.a. chemotherapy). Results. Median survival was 33.1 months from time of diagnosis and 16.0 months from first therapy. UICC stage analysis showed a median survival of 15.9 months for stage I, 9 months for IIIa, 18.4 months for IIIc, and 13 months for IV. Only the number of lesions, baseline serum CEA and serum CA19-9, and objective response (RECIST) were independently associated with survival. Extrahepatic metastases had no influence. Conclusion. Patients with unresectable ICC may benefit from hepatic tumor control provided by local or locoregional therapies. Future prospective study formats should focus on supplementing systemic therapy by classes of interventions (“toolbox”) rather than specific techniques, that is, local ablation leading to complete tumor destruction (such as RFA) or locoregional treatment leading to partial remission (such as radioembolization). This trial is registered with German Clinical Trials Registry (Deutsche Register Klinischer Studien), DRKS-ID: DRKS00006237

    Needle track seeding in hepatocellular carcinoma after local ablation by high-dose-rate brachytherapy: a retrospective study of 588 catheter placements

    Get PDF
    Purpose: Needle track seeding in the local treatment of hepatocellular carcinoma (HCC) is not yet evaluated for catheter-based high-dose-rate brachytherapy (HDR-BT), a novel local ablative technique. Material and methods: We report a retrospective analysis of 100 patients treated on 233 HCC lesions by HDR-BT (using 588 catheters in total). No needle or catheter track irradiation was used. Minimum required follow-up with imaging was 6 months. In case of suspected needle track seeding (intra- and/or extrahepatic) in follow-up, image fusion of follow-up CT/MRI with 3D irradiation plan was used to verify the location of a new tumor deposit within the path of a brachytherapy catheter at the time of treatment. Results: We identified 9 needle track metastases, corresponding to a catheter-based risk of 1.5% for any location of occurrence. A total of 7 metastases were located within the liver (catheter-based risk, 1.2%), and 2 metastases were located extrahepatic (catheter-based risk, 0.3%). Eight out of 9 needle track metastases were successfully treated by further HDR-BT. Conclusions: The risk for needle track seeding after interstitial HDR-BT of HCC is comparable to previous reports of percutaneous biopsies and radiofrequency ablation (RFA), especially in case of extrahepatic needle track metastases. To compensate for the risk of seeding, a track irradiation technique similar to track ablation in RFA should be implemented in clinical routine

    In vivo assessment of catheter positioning accuracy and prolonged irradiation time on liver tolerance dose after single-fraction 192Ir high-dose-rate brachytherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess brachytherapy catheter positioning accuracy and to evaluate the effects of prolonged irradiation time on the tolerance dose of normal liver parenchyma following single-fraction irradiation with <sup>192 </sup>Ir.</p> <p>Materials and methods</p> <p>Fifty patients with 76 malignant liver tumors treated by computed tomography (CT)-guided high-dose-rate brachytherapy (HDR-BT) were included in the study. The prescribed radiation dose was delivered by 1 - 11 catheters with exposure times in the range of 844 - 4432 seconds. Magnetic resonance imaging (MRI) datasets for assessing irradiation effects on normal liver tissue, edema, and hepatocyte dysfunction, obtained 6 and 12 weeks after HDR-BT, were merged with 3D dosimetry data. The isodose of the treatment plan covering the same volume as the irradiation effect was taken as a surrogate for the liver tissue tolerance dose. Catheter positioning accuracy was assessed by calculating the shift between the 3D center coordinates of the irradiation effect volume and the tolerance dose volume for 38 irradiation effects in 30 patients induced by catheters implanted in nearly parallel arrangement. Effects of prolonged irradiation were assessed in areas where the irradiation effect volume and tolerance dose volume did not overlap (mismatch areas) by using a catheter contribution index. This index was calculated for 48 irradiation effects induced by at least two catheters in 44 patients.</p> <p>Results</p> <p>Positioning accuracy of the brachytherapy catheters was 5-6 mm. The orthogonal and axial shifts between the center coordinates of the irradiation effect volume and the tolerance dose volume in relation to the direction vector of catheter implantation were highly correlated and in first approximation identically in the T1-w and T2-w MRI sequences (<it>p </it>= 0.003 and <it>p </it>< 0.001, respectively), as were the shifts between 6 and 12 weeks examinations (<it>p </it>= 0.001 and <it>p </it>= 0.004, respectively). There was a significant shift of the irradiation effect towards the catheter entry site compared with the planned dose distribution (<it>p </it>< 0.005). Prolonged treatment time increases the normal tissue tolerance dose. Here, the catheter contribution indices indicated a lower tolerance dose of the liver parenchyma in areas with prolonged irradiation (<it>p </it>< 0.005).</p> <p>Conclusions</p> <p>Positioning accuracy of brachytherapy catheters is sufficient for clinical practice. Reduced tolerance dose in areas exposed to prolonged irradiation is contradictory to results published in the current literature. Effects of prolonged dose administration on the liver tolerance dose for treatment times of up to 60 minutes per HDR-BT session are not pronounced compared to effects of positioning accuracy of the brachytherapy catheters and are therefore of minor importance in treatment planning.</p

    Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess radiobiological restrictions and tolerance doses as well as other toxic effects derived from repeated applications of single-fraction high dose rate irradiation of small liver volumes in clinical practice.</p> <p>Methods</p> <p>Twenty patients with liver metastases were treated repeatedly (2 - 4 times) at identical or intersecting locations by CT-guided interstitial brachytherapy with varying time intervals. Magnetic resonance imaging using the hepatocyte selective contrast media Gd-BOPTA was performed before and after treatment to determine the volume of hepatocyte function loss (called pseudolesion), and the last acquired MRI data set was merged with the dose distributions of all administered brachytherapies. We calculated the BED (biologically equivalent dose for a single dose d = 2 Gy) for different α/β values (2, 3, 10, 20, 100) based on the linear-quadratic model and estimated the tolerance dose for liver parenchyma D<sub>90 </sub>as the BED exposing 90% of the pseudolesion in MRI.</p> <p>Results</p> <p>The tolerance doses D<sub>90 </sub>after repeated brachytherapy sessions were found between 22 - 24 Gy and proved only slightly dependent on α/β in the clinically relevant range of α/β = 2 - 10 Gy. Variance analysis showed a significant dependency of D<sub>90 </sub>with respect to the intervals between the first irradiation and the MRI control (p < 0.05), and to the number of interventions. In addition, we observed a significant inverse correlation (p = 0.037) between D<sub>90 </sub>and the pseudolesion's volume. No symptoms of liver dysfunction or other toxic effects such as abscess formation occurred during the follow-up time, neither acute nor on the long-term.</p> <p>Conclusions</p> <p>Inactivation of liver parenchyma occurs at a BED of approx. 22 - 24 Gy corresponding to a single dose of ~10 Gy (α/β ~ 5 Gy). This tolerance dose is consistent with the large potential to treat oligotopic and/or recurrent liver metastases by CT-guided HDR brachytherapy without radiation-induced liver disease (RILD). Repeated small volume irradiation may be applied safely within the limits of this study.</p

    Quantitative in vivo assessment of radiation injury of the liver using Gd-EOB-DTPA enhanced MRI: tolerance dose of small liver volumes

    Get PDF
    <p>Abstract</p> <p>Backround</p> <p>Hepatic radiation toxicity restricts irradiation of liver malignancies. Better knowledge of hepatic tolerance dose is favourable to gain higher safety and to optimize radiation regimes in radiotherapy of the liver. In this study we sought to determine the hepatic tolerance dose to small volume single fraction high dose rate irradiation.</p> <p>Materials and methods</p> <p>23 liver metastases were treated by CT-guided interstitial brachytherapy. MRI was performed 3 days, 6, 12 and 24 weeks after therapy. MR-sequences were conducted with T1-w GRE enhanced by hepatocyte-targeted Gd-EOB-DTPA. All MRI data sets were merged with 3D-dosimetry data. The reviewer indicated the border of hypointensity on T1-w images (loss of hepatocyte function) or hyperintensity on T2-w images (edema). Based on the volume data, a dose-volume-histogram was calculated. We estimated the threshold dose for edema or function loss as the D<sub>90</sub>, i.e. the dose achieved in at least 90% of the pseudolesion volume.</p> <p>Results</p> <p>At six weeks post brachytherapy, the hepatocyte function loss reached its maximum extending to the former 9.4Gy isosurface in median (i.e., ≥9.4Gy dose exposure led to hepatocyte dysfunction). After 12 and 24 weeks, the dysfunctional volume had decreased significantly to a median of 11.4Gy and 14Gy isosurface, respectively, as a result of repair mechanisms. Development of edema was maximal at six weeks post brachytherapy (9.2Gy isosurface in median), and regeneration led to a decrease of the isosurface to a median of 11.3Gy between 6 and 12 weeks. The dose exposure leading to hepatocyte dysfunction was not significantly different from the dose provoking edema.</p> <p>Conclusion</p> <p>Hepatic injury peaked 6 weeks after small volume irradiation. Ongoing repair was observed up to 6 months. Individual dose sensitivity may differ as demonstrated by a relatively high standard deviation of threshold values in our own as well as all other published data.</p

    Gonadectomy in conditions affecting sex development: a registry-based cohort study

    Get PDF
    Objectives To determine trends in clinical practice for individuals with DSD requiring gonadectomy. Design Retrospective cohort study. Methods Information regarding age at gonadectomy according to diagnosis; reported sex; time of presentation to specialist centre; and location of centre from cases reported to the International DSD Registry and who were over 16 years old in January 2019. Results Data regarding gonadectomy were available in 668 (88%) individuals from 44 centres. Of these, 248 (37%) (median age (range) 24 (17, 75) years) were male and 420 (63%) (median age (range) 26 (16, 86) years) were female. Gonadectomy was reported from 36 centres in 351/668 cases (53%). Females were more likely to undergo gonadectomy (n = 311, P < 0.0001). The indication for gonadectomy was reported in 268 (76%). The most common indication was mitigation of tumour risk in 172 (64%). Variations in the practice of gonadectomy were observed; of the 351 cases from 36 centres, 17 (5%) at 9 centres had undergone gonadectomy before their first presentation to the specialist centre. Median age at gonadectomy of cases from high-income countries and low-/middle-income countries (LMIC) was 13.0 years (0.1, 68) years and 16.5 years (1, 28), respectively (P < 0.0001) with the likelihood of long-term retention of gonads being higher in LMIC countries. Conclusions The likelihood of gonadectomy depends on the underlying diagnosis, sex of rearing and the geographical setting. Clinical benchmarks, which can be studied across all forms of DSD will allow a better understanding of the variation in the practice of gonadectomy
    corecore